These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 6145756)
61. Rapid drug application resolves two types of nicotinic receptors on rat sympathetic ganglion cells. Britt JC; Brenner HR Pflugers Arch; 1997 May; 434(1):38-48. PubMed ID: 9094254 [TBL] [Abstract][Full Text] [Related]
62. Potentiation of nicotinic transmission in the rat superior cervical sympathetic ganglion: effects of cyclic GMP and nitric oxide generators. Briggs CA Brain Res; 1992 Feb; 573(1):139-46. PubMed ID: 1315604 [TBL] [Abstract][Full Text] [Related]
63. Increment of calmodulin in proportion to enhancement of non-nicotinic responses after preganglionic stimulation of the dog cardiac sympathetic ganglia. Kushiku K; Araki Y; Furukawa T; Iwasa T; Inoue N; Miyamoto E J Pharmacol Exp Ther; 1988 Apr; 245(1):311-8. PubMed ID: 2896238 [TBL] [Abstract][Full Text] [Related]
64. Mass and in situ molar activity of tyrosine hydroxylase in the median eminence. Effect of thyroidectomy and thyroid hormone replacement. Wang PS; Gonzalez HA; Reymond MJ; Porter JC Neuroendocrinology; 1989 Jun; 49(6):659-63. PubMed ID: 2570369 [TBL] [Abstract][Full Text] [Related]
65. Selective response of rat peripheral sympathetic nervous system to various stimuli. Ulus IH; Wurtman RJ J Physiol; 1979 Aug; 293():513-23. PubMed ID: 41093 [TBL] [Abstract][Full Text] [Related]
66. Muscarinic agonists block five different potassium conductances in guinea-pig sympathetic neurones. Cassell JF; McLachlan EM Br J Pharmacol; 1987 Jun; 91(2):259-61. PubMed ID: 2886166 [TBL] [Abstract][Full Text] [Related]
67. A bimolecular reaction between bethanechol and muscarinic receptors leading to asynchronous firing in rat superior cervical ganglia. Wong KK; McIsaac RJ Eur J Pharmacol; 1979 Sep; 58(1):93-4. PubMed ID: 499340 [No Abstract] [Full Text] [Related]
68. Antinociceptive effects of bethanechol or dimethylphenylpiperazinium in models of phasic or incisional pain in rats. Prado WA; Segalla DK Brain Res; 2004 Aug; 1018(2):272-82. PubMed ID: 15276888 [TBL] [Abstract][Full Text] [Related]
69. Whole-cell and perforated patch recordings of four distinct K+ currents in acutely dispersed coeliac-superior mesenteric ganglia neurons of adult rats. Carrier GO Brain Res; 1995 Dec; 701(1-2):1-12. PubMed ID: 8925271 [TBL] [Abstract][Full Text] [Related]
70. Role of muscarinic cholinergic receptors in regulation of guanosine 3':5'-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle. Lee TP; Kuo JF; Greengard P Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3287-91. PubMed ID: 4343961 [TBL] [Abstract][Full Text] [Related]
71. Interactions of agonists with M2 and M4 muscarinic receptor subtypes mediating cyclic AMP inhibition. McKinney M; Miller JH; Gibson VA; Nickelson L; Aksoy S Mol Pharmacol; 1991 Dec; 40(6):1014-22. PubMed ID: 1722002 [TBL] [Abstract][Full Text] [Related]
72. Preganglionic nerve stimulation increases the amount of tyrosine hydroxylase in the rat superior cervical ganglion. Zigmond RE; Chalazonitis A; Joh T Neurosci Lett; 1980 Oct; 20(1):61-5. PubMed ID: 6133253 [TBL] [Abstract][Full Text] [Related]
73. Protein kinase A and nicotinic activation of bovine adrenal tyrosine hydroxylase. Marley PD; Thomson KA; Bralow RA Br J Pharmacol; 1995 Apr; 114(8):1687-93. PubMed ID: 7599937 [TBL] [Abstract][Full Text] [Related]
74. Adrenal influence on tyrosine hydroxylase activity in superior cervical ganglion. Markey KA; Sze PY Brain Res; 1980 Dec; 202(2):347-56. PubMed ID: 6108152 [TBL] [Abstract][Full Text] [Related]
75. A selective Ca2+/calmodulin-dependent protein kinase II inhibitor, KN-62, inhibits the enhanced phosphorylation and the activation of tyrosine hydroxylase by 56 mM K+ in rat pheochromocytoma PC12h cells. Ishii A; Kiuchi K; Kobayashi R; Sumi M; Hidaka H; Nagatsu T Biochem Biophys Res Commun; 1991 May; 176(3):1051-6. PubMed ID: 1674865 [TBL] [Abstract][Full Text] [Related]
76. Rectification of currents activated by nicotinic acetylcholine receptors in rat sympathetic ganglion neurones. Mathie A; Colquhoun D; Cull-Candy SG J Physiol; 1990 Aug; 427():625-55. PubMed ID: 1698982 [TBL] [Abstract][Full Text] [Related]
77. Characteristics of tyrosine hydroxylase activation by K+-induced depolarization and/or forskolin in rat striatal slices. el Mestikawy S; Gozlan H; Glowinski J; Hamon M J Neurochem; 1985 Jul; 45(1):173-84. PubMed ID: 2860207 [TBL] [Abstract][Full Text] [Related]
78. Evidence for a respiration-modulated cholinergic action on the activity of medullary respiration-related neurons in the rabbit. An iontophoretic study. Böhmer G; Schmid K; Baumann M Pflugers Arch; 1989 Oct; 415(1):72-80. PubMed ID: 2576119 [TBL] [Abstract][Full Text] [Related]
79. Trans-synaptic increase in RNA coding for tyrosine hydroxylase in a rat sympathetic ganglion. Black IB; Chikaraishi DM; Lewis EJ Brain Res; 1985 Jul; 339(1):151-3. PubMed ID: 2862954 [TBL] [Abstract][Full Text] [Related]
80. Induction of tyrosine hydroxylase elicited by beta adrenergic receptor agonists in normal and decentralized sympathetic ganglia: role of cyclic 3',5' - adenosine monophosphate. Hanbauer I; Kopin IJ; Guidotti A; Costa E J Pharmacol Exp Ther; 1975 Apr; 193(1):95-104. PubMed ID: 237117 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]