BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 6146310)

  • 21. Revertible hydrogen uptake-deficient mutants of Rhizobium japonicum.
    Lepo JE; Hickok RE; Cantrell MA; Russell SA; Evans HJ
    J Bacteriol; 1981 May; 146(2):614-20. PubMed ID: 6783623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calvin cycle mutants of photoheterotrophic purple nonsulfur bacteria fail to grow due to an electron imbalance rather than toxic metabolite accumulation.
    Gordon GC; McKinlay JB
    J Bacteriol; 2014 Mar; 196(6):1231-7. PubMed ID: 24415727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation D-malic and beta-alkylmalic acids wild-type and mutant strains of Salmonella typhimurium and by Aerobacter aerogenes.
    Stern JR; O'Brien RW
    J Bacteriol; 1969 Apr; 98(1):147-51. PubMed ID: 4889267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosynthetic and bioenergetic functions of citric acid cycle reactions in Rhodopseudomonas capsulata.
    Beatty JT; Gest H
    J Bacteriol; 1981 Nov; 148(2):584-93. PubMed ID: 7298578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Derepression of nitrogenase by addition of malate to cultures of Rhodospirillum rubrum grown with glutamate as the carbon and nitrogen source.
    Hoover TR; Ludden PW
    J Bacteriol; 1984 Jul; 159(1):400-3. PubMed ID: 6145702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement in vivo of hydrogenase-catalysed hydrogen evolution in the presence of nitrogenase enzyme in cyanobacteria.
    Daday A; Lambert GR; Smith GD
    Biochem J; 1979 Jan; 177(1):139-44. PubMed ID: 106842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies on kinetics of substrate utilization of hydrogen production from wastewater with immobilized cells of photosynthetic bacteria.
    Xu X; Yu X; Zheng P; Chen W; Feng X
    Chin J Biotechnol; 1995; 11(1):69-77. PubMed ID: 7548773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris.
    Rey FE; Oda Y; Harwood CS
    J Bacteriol; 2006 Sep; 188(17):6143-52. PubMed ID: 16923881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The photoproduction of H2 and NH4 fixed from N2 by a derepressed mutant of Rhodospirillum rubrum.
    Weare NM
    Biochim Biophys Acta; 1978 Jun; 502(3):486-94. PubMed ID: 418808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen-mediated enhancement of hydrogenase expression in Azotobacter vinelandii.
    Prosser J; Graham L; Maier RJ
    J Bacteriol; 1988 Apr; 170(4):1990-3. PubMed ID: 3280556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coordinate expression of hydrogenase and ribulose bisphosphate carboxylase in Rhizobium japonicum Hupc mutants.
    Merberg D; Maier RJ
    J Bacteriol; 1984 Oct; 160(1):448-50. PubMed ID: 6384199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen formation in nearly stoichiometric amounts from glucose by a Rhodopseudomonas sphaeroides mutant.
    Macler BA; Pelroy RA; Bassham JA
    J Bacteriol; 1979 May; 138(2):446-52. PubMed ID: 312286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and isolation of genes essential for H2 oxidation in Rhodobacter capsulatus.
    Xu HW; Love J; Borghese R; Wall JD
    J Bacteriol; 1989 Feb; 171(2):714-21. PubMed ID: 2536678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolically engineered Rhodobacter sphaeroides RV strains for improved biohydrogen photoproduction combined with disposal of food wastes.
    Franchi E; Tosi C; Scolla G; Penna GD; Rodriguez F; Pedroni PM
    Mar Biotechnol (NY); 2004; 6(6):552-65. PubMed ID: 15645340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Strategy to Increase Microbial Hydrogen Production, Facilitating Intracellular Energy Reserves.
    Lee HJ; Park J; Lee JY; Kim P
    J Microbiol Biotechnol; 2016 Aug; 26(8):1452-6. PubMed ID: 27116993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorylation coupled to H2 oxidation by chromatophores from Rhodopseudomonas capsulata.
    Paul F; Colbeau A; Vignais PM
    FEBS Lett; 1979 Oct; 106(1):29-33. PubMed ID: 499500
    [No Abstract]   [Full Text] [Related]  

  • 37. Depression of the synthesis of the intermediate and large forms of ribulose-1,5-bisphosphate carboxylase/oxygenase in Rhodopseudomonas capsulata.
    Shively JM; Davidson E; Marrs BL
    Arch Microbiol; 1984 Jul; 138(3):233-6. PubMed ID: 6089690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemoautotrophic growth of hydrogen-uptake-positive strains of Rhizobium japonicum.
    Lepo JE; Hanus FJ; Evans HJ
    J Bacteriol; 1980 Feb; 141(2):664-70. PubMed ID: 6767687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycerol assimilation by a mutant of Rhodopseudomonas capsulata.
    Lueking D; Tokuhisa D; Sojka G
    J Bacteriol; 1973 Sep; 115(3):897-903. PubMed ID: 4728273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source.
    Madigan MT; Gest H
    J Bacteriol; 1979 Jan; 137(1):524-30. PubMed ID: 216663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.