These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 6146310)

  • 41. Rhizobium japonicum mutant strains unable to grow chemoautotrophically with H2.
    Maier RJ
    J Bacteriol; 1981 Jan; 145(1):533-40. PubMed ID: 6780521
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of hydrogen utilisation in Rhizobium japonicum by cyclic AMP.
    Lim ST; Shanmugam KT
    Biochim Biophys Acta; 1979 May; 584(3):479-92. PubMed ID: 222344
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport.
    Queiros O; Casal M; Althoff S; Moradas-Ferreira P; Leao C
    Yeast; 1998 Mar; 14(5):401-7. PubMed ID: 9559548
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of the deletion of hup genes encoding the uptake hydrogenase on the activity of hydrogen production in the purple photosynthetic bacterium Rubrivivax gelatinosus IL144.
    Sato T; Inoue K; Sakurai H; Nagashima KVP
    J Gen Appl Microbiol; 2017 Nov; 63(5):274-279. PubMed ID: 28904251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Directed evolution of thermotolerant malic enzyme for improved malate production.
    Morimoto Y; Honda K; Ye X; Okano K; Ohtake H
    J Biosci Bioeng; 2014 Feb; 117(2):147-152. PubMed ID: 23932397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Membrane topography of anaerobic carbon monoxide oxidation in Rhodocyclus gelatinosus.
    Champine JE; Uffen RL
    J Bacteriol; 1987 Oct; 169(10):4784-9. PubMed ID: 3308854
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon allocation in wild-type and Glc+ Rhodobacter sphaeroides under photoheterotrophic conditions.
    Macler BA; Bassham JA
    Appl Environ Microbiol; 1988 Nov; 54(11):2737-41. PubMed ID: 3145710
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic transfer of nitrogenase-hydrogenase activity in Rhodopseudomonas capsulata.
    Wall JD; Weaver PF; Gest H
    Nature; 1975 Dec; 258(5536):630-1. PubMed ID: 1207743
    [No Abstract]   [Full Text] [Related]  

  • 49. Inactivation of the uptake hydrogenase in the purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS enables a biological water-gas shift platform for H
    Eckert CA; Freed E; Wawrousek K; Smolinski S; Yu J; Maness PC
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):993-1002. PubMed ID: 30968274
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium.
    Chan YK; Nelson LM; Knowles R
    Can J Microbiol; 1980 Sep; 26(9):1126-31. PubMed ID: 6257362
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rhizobium japonicum mutants that are hypersensitive to repression of H2 uptake by oxygen.
    Maier RJ; Merberg DM
    J Bacteriol; 1982 Apr; 150(1):161-7. PubMed ID: 6277861
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photoproduction of h(2) from cellulose by an anaerobic bacterial coculture.
    Odom JM; Wall JD
    Appl Environ Microbiol; 1983 Apr; 45(4):1300-5. PubMed ID: 16346269
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation and properties of malic enzyme and its gene in Rhodopseudomonas palustris No. 7.
    Sato I; Yoshikawa J; Furusawa A; Chiku K; Amachi S; Fujii T
    Biosci Biotechnol Biochem; 2010; 74(1):75-81. PubMed ID: 20057150
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Growth in the dark and the NADH-oxidase activity of Rhodopseudomonas palustris].
    Rodova NA; Krasil'nikova EN
    Mikrobiologiia; 1974 Mar; 43(2):208-13. PubMed ID: 4151335
    [No Abstract]   [Full Text] [Related]  

  • 55. Regulation of nitrogenase A and R concentrations in Rhodopseudomonas capsulata by glutamine synthetase.
    Yoch DC
    Biochem J; 1980 Apr; 187(1):273-6. PubMed ID: 6105870
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of the functional role of Asp141, Asp194, and Asp464 residues in the Mn2+-L-malate binding of pigeon liver malic enzyme.
    Chou WY; Chang HP; Huang CH; Kuo CC; Tong L; Chang GG
    Protein Sci; 2000 Feb; 9(2):242-51. PubMed ID: 10716176
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Involvement of Phe19 in the Mn(2+)-L-malate binding and the subunit interactions of pigeon liver malic enzyme.
    Chou WY; Liu MY; Huang SM; Chang GG
    Biochemistry; 1996 Jul; 35(30):9873-9. PubMed ID: 8703961
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of carbon sources on the aggregation of photo fermentative bacteria induced by L-cysteine for enhancing hydrogen production.
    Xie GJ; Liu BF; Ding J; Wang Q; Ma C; Zhou X; Ren NQ
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):25312-25322. PubMed ID: 27696162
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Utilization of methanol by rhodospirillaceae.
    Quayle JR; Pfennig N
    Arch Microbiol; 1975 Mar; 102(3):193-8. PubMed ID: 239653
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assimilation of D-malate by Rhodobacter capsulatus E1F1.
    Martínez-Luque M; Castillo F; Blasco R
    Curr Microbiol; 2001 Sep; 43(3):154-7. PubMed ID: 11400062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.