These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6146447)

  • 1. Sodium-ion dependence of glycine and lysine transport in chicken erythrocytes genetically selected for high and low leucine transport activity.
    Lerner J; Smagula RM; Somes RG
    Comp Biochem Physiol A Comp Physiol; 1984; 78(2):277-8. PubMed ID: 6146447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid transport and intracellular Na+ and K+ content of chicken erythrocytes genetically selected for high and low leucine transport activity.
    Lerner J; Smagula RM; Hilchey SE; Somes RG
    Comp Biochem Physiol A Comp Physiol; 1982; 73(2):243-8. PubMed ID: 6128112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective breeding of chickens for erythrocytes with high and low leucine transport activity.
    Somes RG; Smagula RM; Lerner J
    Am J Physiol; 1981 Nov; 241(5):C233-42. PubMed ID: 7304735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell membrane amino acid transport processes in the domestic fowl (Gallus domesticus).
    Lerner J
    Comp Biochem Physiol A Comp Physiol; 1984; 78(2):205-15. PubMed ID: 6146442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. System y+L-like activities account for high and low amino-acid transport phenotypes in chicken erythrocytes.
    Vargas M; Devés R
    J Membr Biol; 2001 Oct; 183(3):183-93. PubMed ID: 11696860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine transport in human erythrocytes.
    Ellory JC; Jones SE; Young JD
    J Physiol; 1981 Nov; 320():403-22. PubMed ID: 7320944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of leucine, lysine, aspartic acid, and glycine into isolated neurons and astrocytes.
    Hannuniemi R; Oja SS
    Neurochem Res; 1981 Aug; 6(8):873-84. PubMed ID: 6796899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation and harmaline interactions with Na(+)-independent dibasic amino acid transport system y+ in human erythrocytes and in erythrocytes from a primitive vertebrate the pacific hagfish (Eptatretus stouti).
    Young JD; Fincham DA; Harvey CM
    Biochim Biophys Acta; 1991 Nov; 1070(1):111-8. PubMed ID: 1751517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in amino acid transport in the chicken erythrocyte.
    Lerner J; Hilchey SE; Smagula RM
    Comp Biochem Physiol A Comp Physiol; 1983; 74(4):881-4. PubMed ID: 6132735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in glycine and leucine transport during red cell maturation in the rat.
    Felipe A; Viñas O; Remesar X
    Biosci Rep; 1990 Apr; 10(2):209-16. PubMed ID: 2357485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of transport system b0,+ in blastocysts by inorganic and organic cations yields insight into the structure of its amino acid receptor site.
    Van Winkle LJ; Campione AL; Gorman JM
    Biochim Biophys Acta; 1990 Jun; 1025(2):215-24. PubMed ID: 2114171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the hypothesis that system y(+)L accounts for high- and low-transport phenotypes in chicken erythrocytes using L-leucine as substrate.
    Angelo S; Cabrera S; Rojas AM; Rodríguez N; Devés R
    J Membr Biol; 2005 Mar; 204(2):93-100. PubMed ID: 16151705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further studies on amino acid transport in murine P388 leukemia cells in vitro. Presence of system y+.
    Lazarus P; Panasci LC
    Biochim Biophys Acta; 1987 Apr; 898(2):154-8. PubMed ID: 3103685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A distinct, Na+-dependent glycine transport system in avian small intestine.
    Nelson KM; Lerner J
    Biochim Biophys Acta; 1970 Jun; 203(3):434-44. PubMed ID: 5523742
    [No Abstract]   [Full Text] [Related]  

  • 15. [Effect of ascorbic acid on the intestinal transport of glycine in chick].
    Basova NA; Berzinia NI; Markov IuG
    Ross Fiziol Zh Im I M Sechenova; 2010 Feb; 96(2):173-82. PubMed ID: 20432725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of dietary intake of sodium chloride on sugar and amino acid transport across isolated hen colon.
    Lind J; Munck BG; Olsen O
    J Physiol; 1980 Aug; 305():327-36. PubMed ID: 7441558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The binding specificity of amino acid transport system y+L in human erythrocytes is altered by monovalent cations.
    Angelo S; Irarrázabal C; Devés R
    J Membr Biol; 1996 Sep; 153(1):37-44. PubMed ID: 8694905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na- and Cl-dependent glycine transport in human red blood cells and ghosts. A study of the binding of substrates to the outward-facing carrier.
    King PA; Gunn RB
    J Gen Physiol; 1989 Feb; 93(2):321-42. PubMed ID: 2703819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity.
    Devés R; Chavez P; Boyd CA
    J Physiol; 1992 Aug; 454():491-501. PubMed ID: 1474499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.