These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 6146525)
1. Fatty acid synthesis in mitochondria of Euglena gracilis. Inui H; Miyatake K; Nakano Y; Kitaoka S Eur J Biochem; 1984 Jul; 142(1):121-6. PubMed ID: 6146525 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. Hoffmeister M; Piotrowski M; Nowitzki U; Martin W J Biol Chem; 2005 Feb; 280(6):4329-38. PubMed ID: 15569691 [TBL] [Abstract][Full Text] [Related]
3. The physiological role of oxygen-sensitive pyruvate dehydrogenase in mitochondrial fatty acid synthesis in Euglena gracilis. Inui H; Miyatake K; Nakano Y; Kitaoka S Arch Biochem Biophys; 1985 Mar; 237(2):423-9. PubMed ID: 3919646 [TBL] [Abstract][Full Text] [Related]
4. Kinetic studies of the fatty acid synthetase multienzyme complex from Euglena gracilis variety bacillaris. Walker TA; Jonak ZL; Worsham LM; Ernst-Fonberg ML Biochem J; 1981 Nov; 199(2):383-92. PubMed ID: 6803763 [TBL] [Abstract][Full Text] [Related]
5. Anaerobic respiration coupled with mitochondrial fatty acid synthesis in wax ester fermentation by Euglena gracilis. Nakazawa M; Ando H; Nishimoto A; Ohta T; Sakamoto K; Ishikawa T; Ueda M; Sakamoto T; Nakano Y; Miyatake K; Inui H FEBS Lett; 2018 Dec; 592(24):4020-4027. PubMed ID: 30328102 [TBL] [Abstract][Full Text] [Related]
6. The Mitochondrion of Euglena gracilis. Zimorski V; Rauch C; van Hellemond JJ; Tielens AGM; Martin WF Adv Exp Med Biol; 2017; 979():19-37. PubMed ID: 28429315 [TBL] [Abstract][Full Text] [Related]
7. Wax Ester Fermentation and Its Application for Biofuel Production. Inui H; Ishikawa T; Tamoi M Adv Exp Med Biol; 2017; 979():269-283. PubMed ID: 28429326 [TBL] [Abstract][Full Text] [Related]
8. Existence of acetyl-CoA-dependent chain elongation system in hepatic peroxisomes of rat: effects of clofibrate and di-(2-ethylhexyl)phthalate on the activity. Horie S; Suzuki T; Suga T Arch Biochem Biophys; 1989 Oct; 274(1):64-73. PubMed ID: 2774583 [TBL] [Abstract][Full Text] [Related]
9. [Activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and rate of biosynthesis of mevalonic acid, squalene, sterols and fatty acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: changes induced by daily rhythm]. Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE Biokhimiia; 1981 Jan; 46(1):126-39. PubMed ID: 6113851 [TBL] [Abstract][Full Text] [Related]
10. Purification and some properties of short chain-length specific trans-2-enoyl-CoA reductase in mitochondria of Euglena gracilis. Inui H; Miyatake K; Nakano Y; Kitaoka S J Biochem; 1986 Oct; 100(4):995-1000. PubMed ID: 3102464 [TBL] [Abstract][Full Text] [Related]
11. Fatty acid biosynthesis in Erlich cells. The mechanism of short term control by exogenous free fatty acids. McGee R; Spector AA J Biol Chem; 1975 Jul; 250(14):5419-25. PubMed ID: 237919 [TBL] [Abstract][Full Text] [Related]
12. Comparative proteomic analysis of mitochondria isolated from Euglena gracilis under aerobic and hypoxic conditions. Tamaki S; Nishino K; Ogawa T; Maruta T; Sawa Y; Arakawa K; Ishikawa T PLoS One; 2019; 14(12):e0227226. PubMed ID: 31891638 [TBL] [Abstract][Full Text] [Related]
13. A microsomal fatty acid synthetase coupled to acyl-CoA reductase in Euglena gracilis. Khan AA; Kolattukudy PE Arch Biochem Biophys; 1973 Sep; 158(1):411-20. PubMed ID: 4147082 [No Abstract] [Full Text] [Related]
14. On the mechanism of malonyl-CoA-independent fatty-acid synthesis. Characterization of the mitochondrial chain-elongating system of rat liver and pig-kidney cortex. Hinsch W; Seubert W Eur J Biochem; 1975 May; 53(2):437-47. PubMed ID: 237759 [TBL] [Abstract][Full Text] [Related]
15. Control of synthesis and distribution of acyl moieties in etiolated Euglena gracilis. Khan AA; Kolattukudy PE Biochemistry; 1973 May; 12(10):1939-48. PubMed ID: 4634163 [No Abstract] [Full Text] [Related]
16. A major isoform of mitochondrial trans-2-enoyl-CoA reductase is dispensable for wax ester production in Euglena gracilis under anaerobic conditions. Tomiyama T; Goto K; Tanaka Y; Maruta T; Ogawa T; Sawa Y; Ito T; Ishikawa T PLoS One; 2019; 14(1):e0210755. PubMed ID: 30650145 [TBL] [Abstract][Full Text] [Related]
17. Fatty acid synthesis in mitochondria from Saccharomyces cerevisiae. Bessoule JJ; Lessire R; Rigoulet M; Guerin B; Cassagne C FEBS Lett; 1987 Apr; 214(1):158-62. PubMed ID: 3552725 [TBL] [Abstract][Full Text] [Related]
18. A multienzyme complex for CO2 fixation. Wolpert JS; Ernst-Fonberg ML Biochemistry; 1975 Mar; 14(6):1095-102. PubMed ID: 235276 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial β-oxidation of saturated fatty acids in humans. Adeva-Andany MM; Carneiro-Freire N; Seco-Filgueira M; Fernández-Fernández C; Mouriño-Bayolo D Mitochondrion; 2019 May; 46():73-90. PubMed ID: 29551309 [TBL] [Abstract][Full Text] [Related]
20. [Activities of 3-hydroxyl-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and the rate of mevalonic acid, squalene, sterol and fatty acid biosynthesis from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: effects of Triton WR 1339, starvation and cholesterol diet]. Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE Biokhimiia; 1981 Feb; 46(2):296-305. PubMed ID: 6113854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]