These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 6147288)
1. Calcium-sensitive action potential of long duration in the fertilized egg of the ctenophore Mnemiopsis leidyi. Barish ME Dev Biol; 1984 Sep; 105(1):29-40. PubMed ID: 6147288 [TBL] [Abstract][Full Text] [Related]
2. Successive electrical responses to insemination and concurrent sperm entries in the polyspermic egg of the ctenophore Beroe ovata. Goudeau M; Goudeau H Dev Biol; 1993 Apr; 156(2):537-51. PubMed ID: 8096484 [TBL] [Abstract][Full Text] [Related]
3. Ionic mechanism of the fertilization potential of the marine worm, Urechis caupo (Echiura). Jaffe LA; Gould-Somero M; Holland L J Gen Physiol; 1979 Apr; 73(4):469-92. PubMed ID: 571895 [TBL] [Abstract][Full Text] [Related]
4. Some properties of the membrane currents underlying the fertilization potential in sea urchin eggs. David C; Halliwell J; Whitaker M J Physiol; 1988 Aug; 402():139-54. PubMed ID: 2466981 [TBL] [Abstract][Full Text] [Related]
5. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex. Chen W; Zhang JJ; Hu GY; Wu CP Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229 [TBL] [Abstract][Full Text] [Related]
6. Voltage-clamp study of the conductance activated at fertilization in the starfish egg. Lansman JB J Physiol; 1983 Dec; 345():353-72. PubMed ID: 6663505 [TBL] [Abstract][Full Text] [Related]
7. Ionic requirements for membrane oscillations and their dependence on the calcium concentration in a molluscan pace-maker neurone. Gorman AL; Hermann A; Thomas MV J Physiol; 1982 Jun; 327():185-217. PubMed ID: 7120137 [TBL] [Abstract][Full Text] [Related]
8. A calcium-activated sodium conductance produces a long-duration action potential in the egg of a nemertean worm. Jaffe LA; Kado RT; Kline D J Physiol; 1986 Dec; 381():263-78. PubMed ID: 2442351 [TBL] [Abstract][Full Text] [Related]
9. Ionic currents through the membrane of the mammalian oocyte and their comparison with those in the tunicate and sea urchin. Okamoto H; Takahashi K; Yamashita N J Physiol; 1977 May; 267(2):465-95. PubMed ID: 559759 [TBL] [Abstract][Full Text] [Related]
10. Periodic hyperpolarizing responses in hamster and mouse eggs fertilized with mouse sperm. Igusa Y; Miyazaki S; Yamashita N J Physiol; 1983 Jul; 340():633-47. PubMed ID: 6411906 [TBL] [Abstract][Full Text] [Related]
11. Effects of altered extracellular and intracellular calcium concentration on hyperpolarizing responses of the hamster egg. Igusa Y; Miyazaki S J Physiol; 1983 Jul; 340():611-32. PubMed ID: 6887062 [TBL] [Abstract][Full Text] [Related]
12. In the egg of the ascidian Phallusia mammillata, removal of external Ca2+ modifies the fertilization potential, induces polyspermy, and blocks the resumption of meiosis. Goudeau M; Goudeau H Dev Biol; 1993 Nov; 160(1):165-77. PubMed ID: 8224534 [TBL] [Abstract][Full Text] [Related]
13. Sodium- and calcium-dependent conductances of neurones in the zebra finch hyperstriatum ventrale pars caudale in vitro. Kubota M; Saito N J Physiol; 1991; 440():131-42. PubMed ID: 1804958 [TBL] [Abstract][Full Text] [Related]
14. Fertilization alters the spatial distribution and the density of voltage-dependent sodium current in the egg of the ascidian Boltenia villosa. Hice RE; Moody WJ Dev Biol; 1988 Jun; 127(2):408-20. PubMed ID: 2454208 [TBL] [Abstract][Full Text] [Related]
15. Characterization of voltage-sensitive Na+ and K+ currents recorded from acutely dissociated pelvic ganglion neurons of the adult rat. Yoshimura N; De Groat WC J Neurophysiol; 1996 Oct; 76(4):2508-21. PubMed ID: 8899623 [TBL] [Abstract][Full Text] [Related]
16. Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals. Ouyang W; Hemmings HC J Pharmacol Exp Ther; 2005 Feb; 312(2):801-8. PubMed ID: 15375177 [TBL] [Abstract][Full Text] [Related]
17. Developmental changes in the inward current of the action potential of Rohon-Beard neurones. Baccaglini PI; Spitzer NC J Physiol; 1977 Sep; 271(1):93-117. PubMed ID: 915836 [TBL] [Abstract][Full Text] [Related]
18. The ionic basis of membrane potential changes from before fertilization through the first cleavage in the egg of the frog Rana cameranoi. Erdoğan S; Loğoğlu G; Ozgünen T Gen Physiol Biophys; 1996 Oct; 15(5):371-87. PubMed ID: 9228519 [TBL] [Abstract][Full Text] [Related]
19. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig. Sánchez D; Ribas J J Physiol; 1991; 440():167-87. PubMed ID: 1804959 [TBL] [Abstract][Full Text] [Related]
20. Ionic mechanisms underlying the depolarizing and hyperpolarizing afterpotentials of single spike in guinea-pig cingulate cortical neurons. Higashi H; Tanaka E; Inokuchi H; Nishi S Neuroscience; 1993 Jul; 55(1):129-38. PubMed ID: 8350984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]