These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 6149672)

  • 1. Neuromodulatory roles of adenosine receptors coupling to the calcium channel and adenylate cyclase.
    Kuroda Y
    Adv Exp Med Biol; 1984; 175():145-58. PubMed ID: 6149672
    [No Abstract]   [Full Text] [Related]  

  • 2. Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor.
    Ribeiro JA; Sebastião AM
    Prog Neurobiol; 1986; 26(3):179-209. PubMed ID: 2425391
    [No Abstract]   [Full Text] [Related]  

  • 3. An unlikely role for cyclic AMP in the mediation of the excitatory and inhibitory effects of noradrenaline on transmission in the olfactory cortex.
    Collins GG; Anson J; Hammond PJ
    Brain Res; 1984 May; 299(2):344-7. PubMed ID: 6329421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine, adenylate cyclase, and transmitter release.
    Phillis JW; Barraco RA
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1985; 19():243-57. PubMed ID: 2860780
    [No Abstract]   [Full Text] [Related]  

  • 5. Role of cyclic adenosine monophosphate in simple forms of plasticity in the edible snail.
    Storozhuk MV; Balaban PM
    Neurosci Behav Physiol; 1990; 20(3):267-71. PubMed ID: 2170858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physiological role of adenosine in the central nervous system.
    Dunwiddie TV
    Int Rev Neurobiol; 1985; 27():63-139. PubMed ID: 2867982
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of G proteins, cyclic AMP, and ion channels in the inhibition of transmitter release by adenosine.
    Fredholm BB; Dunér-Engström M; Fastbom J; Hu PS; van der Ploeg I
    Ann N Y Acad Sci; 1990; 604():276-88. PubMed ID: 1699463
    [No Abstract]   [Full Text] [Related]  

  • 8. Phosphorylated adenosine derivatives as low-affinity adenosine-receptor agonists. Methodological implications for the adenylate cyclase assay.
    Schütz W; Steurer G; Tuisl E; Plass H
    Biochem J; 1984 May; 220(1):207-12. PubMed ID: 6331407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence of "Ra" and "P"-site receptors for adenosine coupled to adenylate cyclase in cultured vascular smooth muscle cells.
    Anand-Srivastava MB; Franks DJ; Cantin M; Genest J
    Biochem Biophys Res Commun; 1982 Sep; 108(1):213-9. PubMed ID: 6293481
    [No Abstract]   [Full Text] [Related]  

  • 10. Signal integration in the nervous system: adenylate cyclases as molecular coincidence detectors.
    Anholt RR
    Trends Neurosci; 1994 Jan; 17(1):37-41. PubMed ID: 7511849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended roles in the brain for second-messenger systems.
    McIlwain H
    Neuroscience; 1977; 2(3):357-72. PubMed ID: 70763
    [No Abstract]   [Full Text] [Related]  

  • 12. Ethanol alters the adenosine receptor-Ni-mediated adenylate cyclase inhibitory response in rat brain cortex in vitro.
    Bauché F; Bourdeaux-Jaubert AM; Giudicelli Y; Nordmann R
    FEBS Lett; 1987 Jul; 219(2):296-300. PubMed ID: 3111884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual regulation of adenylate cyclase. A signal transduction mechanism of membrane receptors.
    Jakobs KH; Minuth M; Bauer S; Grandt R; Greiner C; Zubin P
    Basic Res Cardiol; 1986; 81(1):1-9. PubMed ID: 2872880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of cyclic nucleotides in the CNS.
    Phillis JW
    Can J Neurol Sci; 1977 Aug; 4(3):151-95. PubMed ID: 19146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine receptors in the mammalian central nervous system.
    Williams M
    Prog Neuropsychopharmacol Biol Psychiatry; 1983; 7(4-6):443-50. PubMed ID: 6320295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoradiographic analysis of second messenger and neurotransmitter system receptors in the gerbil hippocampus following transient forebrain ischemia.
    Hara H; Onodera H; Kato H; Araki T; Kogure K
    Brain Res; 1991 Apr; 545(1-2):87-96. PubMed ID: 1650282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine receptors in the central nervous system.
    Kreutzberg GW; Reddington M; Lee KS; Schubert P
    Acta Histochem Suppl; 1984; 29():103-6. PubMed ID: 6326185
    [No Abstract]   [Full Text] [Related]  

  • 18. Neuronal, glial and meningeal localizations of neurotransmitter-sensitive adenylate cyclases in cerebral cortex of mice.
    Ebersolt C; Perez M; Bockaert J
    Brain Res; 1981 May; 213(1):139-50. PubMed ID: 6113032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine modulation of synaptic responses in rat hippocampus: possible role of inhibition or activation of adenylate cyclase.
    Dunwiddie TV; Fredholm BB
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1985; 19():259-72. PubMed ID: 2988300
    [No Abstract]   [Full Text] [Related]  

  • 20. Chronic caffeine ingestion sensitizes the A1 adenosine receptor-adenylate cyclase system in rat cerebral cortex.
    Green RM; Stiles GL
    J Clin Invest; 1986 Jan; 77(1):222-7. PubMed ID: 3003150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.