BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 6150022)

  • 1. Regulation of phenylalanine biosynthesis in Rhodotorula glutinis.
    Fiske MJ; Kane JF
    J Bacteriol; 1984 Nov; 160(2):676-81. PubMed ID: 6150022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymological basis for growth inhibition by L-phenylalanine in the cyanobacterium Synechocystis sp. 29108.
    Hall GC; Jensen RA
    J Bacteriol; 1980 Dec; 144(3):1034-42. PubMed ID: 6108316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered prephenate dehydratase in phenylalanine-excreting mutants of Brevibacterium flavum.
    Shiio I; Sugimoto S
    J Biochem; 1976 Jan; 79(1):173-83. PubMed ID: 7552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chorismate mutase and 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the methylotrophic actinomycete Amycolatopsis methanolica.
    Euverink GJ; Hessels GI; Franke C; Dijkhuizen L
    Appl Environ Microbiol; 1995 Nov; 61(11):3796-803. PubMed ID: 8526488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hidden overflow pathway to L-phenylalanine in Pseudomonas aeruginosa.
    Fiske MJ; Whitaker RJ; Jensen RA
    J Bacteriol; 1983 May; 154(2):623-31. PubMed ID: 6132913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the aromatic pathway in the cyanobacterium Synechococcus sp. strain Pcc6301 (Anacystis nidulans).
    Hall GC; Flick MB; Jensen RA
    J Bacteriol; 1983 Jan; 153(1):423-8. PubMed ID: 6129240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (De)regulation of key enzyme steps in the shikimate pathway and phenylalanine-specific pathway of the actinomycete Amycolatopsis methanolica.
    Kloosterman H; Hessels GI; Vrijbloed JW; Euverink GJ; Dijkhuizen L
    Microbiology (Reading); 2003 Nov; 149(Pt 11):3321-3330. PubMed ID: 14600244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Channel-shuttle mechanism for the regulation of phenylalanine and tyrosine synthesis at a metabolic branch point in Pseudomonas aeruginosa.
    Calhoun DH; Pierson DL; Jensen RA
    J Bacteriol; 1973 Jan; 113(1):241-51. PubMed ID: 4631707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repression of aromatic amino acid biosynthesis in Escherichia coli K-12.
    Brown KD; Somerville RL
    J Bacteriol; 1971 Oct; 108(1):386-99. PubMed ID: 4399341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clues from Xanthomonas campestris about the evolution of aromatic biosynthesis and its regulation.
    Whitaker RJ; Berry A; Byng GS; Fiske MJ; Jensen RA
    J Mol Evol; 1984-1985; 21(2):139-49. PubMed ID: 6152589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Chorismate mutase-prephenate dehydratase and prephenate dehydrogenase from alcaligenes eutrophus.
    Friedrich CG; Friedrich B; Schlegel HG
    J Bacteriol; 1976 May; 126(2):723-32. PubMed ID: 4432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas aeruginosa possesses two novel regulatory isozymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase.
    Whitaker RJ; Fiske MJ; Jensen RA
    J Biol Chem; 1982 Nov; 257(21):12789-94. PubMed ID: 6127340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for an artificially evolved bifunctional 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase-chorismate mutase in Bacillus subtilis.
    Llewellyn DJ; Daday A; Smith GD
    J Biol Chem; 1980 Mar; 255(5):2077-84. PubMed ID: 6101597
    [No Abstract]   [Full Text] [Related]  

  • 14. Regulation of metabolic branch points of aromatic amino acid biosynthesis in Pichia guilliermondii.
    Koll P; Bode R; Birnbaum D
    J Basic Microbiol; 1988; 28(9-10):619-27. PubMed ID: 2907046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymic arrangement and allosteric regulation of the aromatic amino acid pathway in Neisseria gonorrhoeae.
    Berry A; Jensen RA; Hendry AT
    Arch Microbiol; 1987; 149(2):87-94. PubMed ID: 2894820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of aromatic amino acid biosynthesis in microorganisms.
    Lingens F
    Acta Microbiol Acad Sci Hung; 1976; 23(2):161-6. PubMed ID: 9782
    [No Abstract]   [Full Text] [Related]  

  • 17. [The mechanism of action of the herbicide N-(phosphonomethyl)glycine: its effect on the growth and the enzymes of aromatic amino acid biosynthesis in Escherichia coli (author's transl)].
    Roisch U; Lingens F
    Hoppe Seylers Z Physiol Chem; 1980 Jul; 361(7):1049-58. PubMed ID: 6105996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The aromatic amino acid pathway branches at L-arogenate in Euglena gracilis.
    Byng GS; Whitaker RJ; Shapiro CL; Jensen RA
    Mol Cell Biol; 1981 May; 1(5):426-38. PubMed ID: 6152855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute dependence of phenylalanine and tyrosine biosynthetic enzyme on tryptophan in Candida maltosa.
    Bode R; Melo C; Birnbaum D
    Hoppe Seylers Z Physiol Chem; 1984 Jul; 365(7):799-803. PubMed ID: 6479898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of phenylalanine and tyrosine biosynthesis in Pseudomonas aureofaciens ATCC 15926.
    Blumenstock E; Salcher O; Lingens F
    J Gen Microbiol; 1980 Mar; 117(1):81-7. PubMed ID: 7391822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.