These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog. Cochran SL Neuroscience; 1995 Oct; 68(4):1147-65. PubMed ID: 8544989 [TBL] [Abstract][Full Text] [Related]
4. Intrinsic quantal variability due to stochastic properties of receptor-transmitter interactions. Faber DS; Young WS; Legendre P; Korn H Science; 1992 Nov; 258(5087):1494-8. PubMed ID: 1279813 [TBL] [Abstract][Full Text] [Related]
5. Modulation of receptor sensitivity and action potentials by transmitters in vertebrate neurones. Koketsu K Jpn J Physiol; 1984; 34(6):945-60. PubMed ID: 6085584 [TBL] [Abstract][Full Text] [Related]
6. Acid-Sensing Ion Channels Activated by Evoked Released Protons Modulate Synaptic Transmission at the Mouse Calyx of Held Synapse. González-Inchauspe C; Urbano FJ; Di Guilmi MN; Uchitel OD J Neurosci; 2017 Mar; 37(10):2589-2599. PubMed ID: 28159907 [TBL] [Abstract][Full Text] [Related]
7. Regulation of ion channel distribution at synapses. Froehner SC Annu Rev Neurosci; 1993; 16():347-68. PubMed ID: 7681636 [TBL] [Abstract][Full Text] [Related]
8. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents. Clarke SG; Scarnati MS; Paradiso KG J Neurosci; 2016 Nov; 36(45):11559-11572. PubMed ID: 27911759 [TBL] [Abstract][Full Text] [Related]
9. Presynaptic long-term facilitation at the crayfish neuromuscular junction: voltage-dependent and ion-dependent phases. Wojtowicz JM; Atwood HL J Neurosci; 1988 Dec; 8(12):4667-74. PubMed ID: 2904490 [TBL] [Abstract][Full Text] [Related]
10. Can presynaptic depolarization release transmitter without calcium influx? Zucker RS; Landò L; Fogelson A J Physiol (Paris); 1986; 81(4):237-45. PubMed ID: 2883310 [TBL] [Abstract][Full Text] [Related]
11. Molecules involved in the formation of synaptic connections in muscle and brain. Ruegg MA Matrix Biol; 2001 Feb; 20(1):3-12. PubMed ID: 11245999 [TBL] [Abstract][Full Text] [Related]
12. Evidence for a voltage-dependent enhancement of neurotransmitter release mediated via the synaptic protein interaction site of N-type Ca2+ channels. Mochida S; Yokoyama CT; Kim DK; Itoh K; Catterall WA Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14523-8. PubMed ID: 9826733 [TBL] [Abstract][Full Text] [Related]
13. Neurotransmitter Switching in the Developing and Adult Brain. Spitzer NC Annu Rev Neurosci; 2017 Jul; 40():1-19. PubMed ID: 28301776 [TBL] [Abstract][Full Text] [Related]
14. A quantum of neurotransmitter causes minis in multiple postsynaptic cells at the Caenorhabditis elegans neuromuscular junction. Liu Q; Chen B; Hall DH; Wang ZW Dev Neurobiol; 2007 Feb; 67(2):123-8. PubMed ID: 17443777 [TBL] [Abstract][Full Text] [Related]
15. Effects of neurotoxicants on synaptic transmission: lessons learned from electrophysiological studies. Atchison WD Neurotoxicol Teratol; 1988; 10(5):393-416. PubMed ID: 2854607 [TBL] [Abstract][Full Text] [Related]
16. Pharmacological aspects of excitatory synaptic transmission to second-order vestibular neurons in the frog. Cochran SL; Kasik P; Precht W Synapse; 1987; 1(1):102-23. PubMed ID: 2850617 [TBL] [Abstract][Full Text] [Related]
17. Excitatory and inhibitory synaptic mechanisms in anaesthesia. Pocock G; Richards CD Br J Anaesth; 1993 Jul; 71(1):134-47. PubMed ID: 7688240 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of transmitter release: voltage hypothesis and calcium hypothesis. Zucker RS; Landò L Science; 1986 Feb; 231(4738):574-9. PubMed ID: 2868525 [TBL] [Abstract][Full Text] [Related]
19. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release. Cooper RL; Winslow JL; Govind CK; Atwood HL J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756 [TBL] [Abstract][Full Text] [Related]