These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Are junction potentials essential? Dual mechanism of smooth muscle cell activation by transmitter released from autonomic nerves. Bolton TB; Large WA Q J Exp Physiol; 1986 Jan; 71(1):1-28. PubMed ID: 2869546 [TBL] [Abstract][Full Text] [Related]
25. Presynaptic frequency- and pattern-dependent filtering. Thomson AM J Comput Neurosci; 2003; 15(2):159-202. PubMed ID: 14512746 [TBL] [Abstract][Full Text] [Related]
26. Transsynaptic Assemblies Link Domains of Presynaptic and Postsynaptic Intracellular Structures across the Synaptic Cleft. Cole AA; Reese TS J Neurosci; 2023 Aug; 43(33):5883-5892. PubMed ID: 37369583 [TBL] [Abstract][Full Text] [Related]
27. BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus. Raffaelli G; Saviane C; Mohajerani MH; Pedarzani P; Cherubini E J Physiol; 2004 May; 557(Pt 1):147-57. PubMed ID: 15034127 [TBL] [Abstract][Full Text] [Related]
28. Developmental transformation of the release modality at the calyx of Held synapse. Fedchyshyn MJ; Wang LY J Neurosci; 2005 Apr; 25(16):4131-40. PubMed ID: 15843616 [TBL] [Abstract][Full Text] [Related]
30. Calcium in long-term potentiation as a model for memory. Eccles JC Neuroscience; 1983 Dec; 10(4):1071-81. PubMed ID: 6320042 [TBL] [Abstract][Full Text] [Related]
31. Organization and function of transmitter release sites at the neuromuscular junction. Meriney SD; Dittrich M J Physiol; 2013 Jul; 591(13):3159-65. PubMed ID: 23613535 [TBL] [Abstract][Full Text] [Related]
32. Divalent cations differentially support transmitter release at the squid giant synapse. Augustine GJ; Eckert R J Physiol; 1984 Jan; 346():257-71. PubMed ID: 6142104 [TBL] [Abstract][Full Text] [Related]
33. Organization and regulation of proteins at synapses. Kim JH; Huganir RL Curr Opin Cell Biol; 1999 Apr; 11(2):248-54. PubMed ID: 10209161 [TBL] [Abstract][Full Text] [Related]
34. Presynaptic uptake blockade hypothesis for LSD action at the lateral inhibitory synapse in Limulus. Kass L; Hartline PH; Adolph AR J Gen Physiol; 1983 Aug; 82(2):245-67. PubMed ID: 6137509 [TBL] [Abstract][Full Text] [Related]
35. Activity-Dependent Global Downscaling of Evoked Neurotransmitter Release across Glutamatergic Inputs in Karunanithi S; Lin YQ; Odierna GL; Menon H; Gonzalez JM; Neely GG; Noakes PG; Lavidis NA; Moorhouse AJ; van Swinderen B J Neurosci; 2020 Oct; 40(42):8025-8041. PubMed ID: 32928887 [TBL] [Abstract][Full Text] [Related]
37. FMRFamide modulation of secretory machinery underlying presynaptic inhibition of synaptic transmission requires a pertussis toxin-sensitive G-protein. Haydon PG; Man-Son-Hing H; Doyle RT; Zoran M J Neurosci; 1991 Dec; 11(12):3851-60. PubMed ID: 1683900 [TBL] [Abstract][Full Text] [Related]
38. The developing synapse: construction and modulation of synaptic structures and circuits. Cohen-Cory S Science; 2002 Oct; 298(5594):770-6. PubMed ID: 12399577 [TBL] [Abstract][Full Text] [Related]
39. Protein Kinase C Enhances Electrical Synaptic Transmission by Acting on Junctional and Postsynaptic Ca Beekharry CC; Gu Y; Magoski NS J Neurosci; 2018 Mar; 38(11):2796-2808. PubMed ID: 29440551 [TBL] [Abstract][Full Text] [Related]
40. Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction. Borodinsky LN; Spitzer NC Proc Natl Acad Sci U S A; 2007 Jan; 104(1):335-40. PubMed ID: 17190810 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]