These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6151490)

  • 1. [Biochemistry and pharmacology of vigilance: role of neurotransmitters within the framework of vigilance control].
    Koella WP
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1984 Dec; 15(4):180-9. PubMed ID: 6151490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurochemical regulation of the states of alertness.
    Gaillard JM
    Ann Clin Res; 1985; 17(5):175-84. PubMed ID: 2867732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Locus coeruleus: implications for psychiatry].
    Orellana Vidal GP
    Acta Psiquiatr Psicol Am Lat; 1995 Mar; 41(1):57-66. PubMed ID: 7660848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opposite effects of noradrenaline and acetylcholine upon hypocretin/orexin versus melanin concentrating hormone neurons in rat hypothalamic slices.
    Bayer L; Eggermann E; Serafin M; Grivel J; Machard D; Muhlethaler M; Jones BE
    Neuroscience; 2005; 130(4):807-11. PubMed ID: 15652980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups.
    Steininger TL; Gong H; McGinty D; Szymusiak R
    J Comp Neurol; 2001 Jan; 429(4):638-53. PubMed ID: 11135241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biochemical regulation of states of vigilance].
    Jouvet M
    Int J Neurol; 1975; 10(1-4):141-57, 252-8. PubMed ID: 171233
    [No Abstract]   [Full Text] [Related]  

  • 7. [Relation between the effects of the memory neuromodulator arginine-vasopressin and the levels of activity of the serotonin-, dopamine- and noradrenergic systems of the brain].
    Bakharev VD; Starikov VA; Papsuevich OS; Chipens GI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1983; 33(1):79-87. PubMed ID: 6837162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topographical distribution of the locus coeruleus and raphe nuclei in the lizard Ctenosaura pectinata: functional implications on sleep.
    Ayala-Guerrero F; Mexicano G
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Feb; 149(2):137-41. PubMed ID: 17383917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavioral and physiologic effects of genetic or pharmacologic inactivation of the substance P receptor (NK1).
    Santarelli L; Gobbi G; Blier P; Hen R
    J Clin Psychiatry; 2002; 63 Suppl 11():11-7. PubMed ID: 12562138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Psychopathy and arousal: a new interpretation of the psychophysiological literature.
    Mawson AR; Mawson CD
    Biol Psychiatry; 1977 Feb; 12(1):49-74. PubMed ID: 13873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear parcellation of certain immunohistochemically identifiable neuronal systems in the midbrain and pons of the Highveld molerat (Cryptomys hottentotus).
    Da Silva JN; Fuxe K; Manger PR
    J Chem Neuroanat; 2006 Jan; 31(1):37-50. PubMed ID: 16289497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amygdaloid control of alerting and behavioral arousal in rats: involvement of serotonergic mechanisms.
    Sanford LD; Tejani-Butt SM; Ross RJ; Morrison AR
    Arch Ital Biol; 1995 Dec; 134(1):81-99. PubMed ID: 8919194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Microsleep from the electro- and psychophysiological point of view].
    Faber J; Novák M; Svoboda P; Tatarinov V; Tichý T
    Sb Lek; 2003; 104(4):375-85. PubMed ID: 15320529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between low-dose amphetamine-induced arousal and extracellular norepinephrine and dopamine levels within prefrontal cortex.
    Berridge CW; Stalnaker TA
    Synapse; 2002 Dec; 46(3):140-9. PubMed ID: 12325041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat.
    Gobert A; Rivet JM; Lejeune F; Newman-Tancredi A; Adhumeau-Auclair A; Nicolas JP; Cistarelli L; Melon C; Millan MJ
    Synapse; 2000 Jun; 36(3):205-21. PubMed ID: 10819900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Functional pathophysiology of consciousness].
    Jellinger KA
    Neuropsychiatr; 2009; 23(2):115-33. PubMed ID: 19573504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circulating neurotransmitters during the different wake-sleep stages in normal subjects.
    Lechin F; Pardey-Maldonado B; van der Dijs B; Benaim M; Baez S; Orozco B; Lechin AE
    Psychoneuroendocrinology; 2004 Jun; 29(5):669-85. PubMed ID: 15041088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking.
    Monti JM; Jantos H
    Prog Brain Res; 2008; 172():625-46. PubMed ID: 18772053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amine pathways and sleep regulation.
    Morgane PJ
    Brain Res Bull; 1982; 9(1-6):743-9. PubMed ID: 6184137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.