These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 6151602)

  • 1. L-Leucine prevents ammonia-induced changes in glutamate receptors in the brain and in visual evoked potentials in the rabbit.
    Ferenci P; Pappas CS; Jones EA
    JPEN J Parenter Enteral Nutr; 1984; 8(6):700-4. PubMed ID: 6151602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in glutamate receptors on synaptic membranes associated with hepatic encephalopathy or hyperammonemia in the rabbit.
    Ferenci P; Pappas SC; Munson PJ; Jones EA
    Hepatology; 1984; 4(1):25-9. PubMed ID: 6141134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ammonium ions on synaptic transmission in the mammalian central nervous system.
    Szerb JC; Butterworth RF
    Prog Neurobiol; 1992 Aug; 39(2):135-53. PubMed ID: 1354386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular brain glutamate during acute liver failure and during acute hyperammonemia simulating acute liver failure: an experimental study based on in vivo brain dialysis.
    de Knegt RJ; Schalm SW; van der Rijt CC; Fekkes D; Dalm E; Hekking-Weyma I
    J Hepatol; 1994 Jan; 20(1):19-26. PubMed ID: 7911135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Pathogenesis of hepatic encephalopathy--studies in the rabbit model of acute liver failure].
    Jones EA; Ferenci P; Pappas SC; Schafer DF
    Leber Magen Darm; 1984 Nov; 14(6):282-7. PubMed ID: 6151107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual evoked potentials in a rabbit model of hepatic encephalopathy. II. Comparison of hyperammonemic encephalopathy, postictal coma, and coma induced by synergistic neurotoxins.
    Pappas SC; Ferenci P; Schafer DF; Jones EA
    Gastroenterology; 1984 Mar; 86(3):546-51. PubMed ID: 6693016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ammonia-induced alterations in glutamate and muscimol binding to cerebellar synaptic membranes.
    Rao VL; Agrawal AK; Murthy CR
    Neurosci Lett; 1991 Sep; 130(2):251-4. PubMed ID: 1686641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of trans-ACPD, a specific agonist of glutamate interacting with metabotropic receptors, on synaptic transmission in the rat hippocampus].
    Garashchuk OV; Koval'chuk IuN; Kryshtal' OA
    Neirofiziologiia; 1992; 24(2):211-4. PubMed ID: 1350854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of repeated hyperammonemia on Na(+)-dependent binding of glutamate in rat cortical and hippocampal synaptic membranes.
    Lisý V; Stastný F
    Neurosci Lett; 1993 Aug; 158(1):113-6. PubMed ID: 7901815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of zinc on markers of glutamate and aspartate neurotransmission in rat hippocampus.
    Slevin JT; Kasarskis EJ
    Brain Res; 1985 May; 334(2):281-6. PubMed ID: 2859913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-ornithine vs. L-ornithine-L-aspartate as a treatment for hyperammonemia-induced encephalopathy in rats.
    Vogels BA; Karlsen OT; Mass MA; Boveé WM; Chamuleau RA
    J Hepatol; 1997 Jan; 26(1):174-82. PubMed ID: 9148009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological aspects of excitatory synaptic transmission to second-order vestibular neurons in the frog.
    Cochran SL; Kasik P; Precht W
    Synapse; 1987; 1(1):102-23. PubMed ID: 2850617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CPP, a selective N-methyl-D-aspartate (NMDA)-type receptor antagonist: characterization in vitro and in vivo.
    Lehmann J; Schneider J; McPherson S; Murphy DE; Bernard P; Tsai C; Bennett DA; Pastor G; Steel DJ; Boehm C
    J Pharmacol Exp Ther; 1987 Mar; 240(3):737-46. PubMed ID: 2882014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate transporter and receptor function in disorders of ammonia metabolism.
    Butterworth RF
    Ment Retard Dev Disabil Res Rev; 2001; 7(4):276-9. PubMed ID: 11754522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride-dependent binding sites for L-[3H]glutamate on dendrodendritic synaptosomal membranes of rat olfactory bulb.
    Quinn MR; Spraguer PA
    J Neurosci Res; 1986; 16(2):409-17. PubMed ID: 2876109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Changes in and modulation of receptor activity in hepatic encephalopathy].
    Kienzl E; Riederer P; Brücke T; Kleinberger G; Jellinger K
    Infusionsther Klin Ernahr; 1985 Feb; 12(1):32, 37-45. PubMed ID: 2859245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-selective effects of ammonia on glutamate transporter and receptor function in the mammalian brain.
    Chan H; Butterworth RF
    Neurochem Int; 2003; 43(4-5):525-32. PubMed ID: 12742100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hyperammonemia and liver failure on glutamatergic neurotransmission.
    Monfort P; Muñoz MD; ElAyadi A; Kosenko E; Felipo V
    Metab Brain Dis; 2002 Dec; 17(4):237-50. PubMed ID: 12602501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure--activity relationships of L-glutamate receptor ligands: role of the omega-acidic terminal.
    Fagg GE; Foster AC; Harris EW; Lanthorn TH; Cotman CW
    Neurosci Lett; 1982 Jul; 31(1):59-64. PubMed ID: 6126848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of acute hepatic encephalopathy and in vitro treatment with ammonia on glutamate oxidation in bulk-isolated astrocytes and mitochondria of the rat brain.
    Wysmyk-Cybula U; Faff-Michalak L; Albrecht J
    Acta Neurobiol Exp (Wars); 1991; 51(5-6):165-9. PubMed ID: 1687972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.