These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 6152035)

  • 1. Correspondence between the dopamine islands and striosomes of the mammalian striatum.
    Graybiel AM
    Neuroscience; 1984 Dec; 13(4):1157-87. PubMed ID: 6152035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of calcium/calmodulin-dependent protein kinase in relation to dopamine islands and synaptic maturation in the cat striatum.
    Newman-Gage H; Graybiel AM
    J Neurosci; 1988 Sep; 8(9):3360-75. PubMed ID: 2845020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous development of calbindin-D28K expression in the striatal matrix.
    Liu FC; Graybiel AM
    J Comp Neurol; 1992 Jun; 320(3):304-22. PubMed ID: 1351896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct demonstration of a correspondence between the dopamine islands and acetylcholinesterase patches in the developing striatum.
    Graybiel AM; Pickel VM; Joh TH; Reis DJ; Ragsdale CW
    Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5871-5. PubMed ID: 6117860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns of muscarinic cholinergic binding in the striatum and their relation to dopamine islands and striosomes.
    Nastuk MA; Graybiel AM
    J Comp Neurol; 1985 Jul; 237(2):176-94. PubMed ID: 4031121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The striatal mosaic in primates: patterns of neuropeptide immunoreactivity differentiate the ventral striatum from the dorsal striatum.
    Martin LJ; Hadfield MG; Dellovade TL; Price DL
    Neuroscience; 1991; 43(2-3):397-417. PubMed ID: 1681464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural grafting in a rat model of Huntington's disease: striosomal-like organization of striatal grafts as revealed by acetylcholinesterase histochemistry, immunocytochemistry and receptor autoradiography.
    Isacson O; Dawbarn D; Brundin P; Gage FH; Emson PC; Björklund A
    Neuroscience; 1987 Aug; 22(2):481-97. PubMed ID: 2823174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [3H]SCH 23390 binding to D1 dopamine receptors in the basal ganglia of the cat and primate: delineation of striosomal compartments and pallidal and nigral subdivisions.
    Besson MJ; Graybiel AM; Nastuk MA
    Neuroscience; 1988 Jul; 26(1):101-19. PubMed ID: 2901690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subdivisions of the dopamine-containing A8-A9-A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix.
    Jimenez-Castellanos J; Graybiel AM
    Neuroscience; 1987 Oct; 23(1):223-42. PubMed ID: 3683862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative development of D1-dopamine and mu opiate receptors in normal and in 6-hydroxydopamine-lesioned neonatal rat striatum: dopaminergic fibers regulate mu but not D1 receptor distribution.
    Caboche J; Rogard M; Besson MJ
    Brain Res Dev Brain Res; 1991 Jan; 58(1):111-22. PubMed ID: 1849802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic ordering of early generated striatal cells destined to form the striosomal compartment of the striatum.
    Newman H; Liu FC; Graybiel AM
    J Comp Neurol; 2015 Apr; 523(6):943-62. PubMed ID: 25521072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal development of striatal neurotensin immunoreactivity in relation to clusters of substance P immunoreactive neurons and the "dopamine islands" in the rat.
    Zahm DS; Eggerman KW; Sprung RF; Wesche DE; Payne E
    J Comp Neurol; 1990 Jun; 296(3):403-14. PubMed ID: 1694190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemospecificity of ontogenetic units in the striatum: demonstration by combining [3H]thymidine neuronography and histochemical staining.
    Graybiel AM; Hickey TL
    Proc Natl Acad Sci U S A; 1982 Jan; 79(1):198-202. PubMed ID: 6172791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse relationship between neurotensin receptors and neurotensin-like immunoreactivity in cat striatum.
    Goedert M; Mantyh PW; Emson PC; Hunt SP
    Nature; 1984 Feb 9-15; 307(5951):543-6. PubMed ID: 6320012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species-specific patterns of glycoprotein expression in the developing rodent caudoputamen: association of 5'-nucleotidase activity with dopamine islands and striosomes in rat, but with extrastriosomal matrix in mouse.
    Schoen SW; Graybiel AM
    J Comp Neurol; 1993 Jul; 333(4):578-96. PubMed ID: 8103780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mosaic-like distribution of dopamine receptors in rat neostriatum and its relationship to striosomes.
    Loopuijt LD; Sebens JB; Korf J
    Brain Res; 1987 Mar; 405(2):405-8. PubMed ID: 3567618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The non-human primate striatum undergoes marked prolonged remodeling during postnatal development.
    Martin LJ; Cork LC
    Front Cell Neurosci; 2014; 8():294. PubMed ID: 25294985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of intrastriatal striatal grafts and their afferent innervation from the host.
    Labandeira-Garcia JL; Wictorin K; Cunningham ET; Björklund A
    Neuroscience; 1991; 42(2):407-26. PubMed ID: 1716746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Striatal neurons expressing somatostatin-like immunoreactivity: evidence for a peptidergic interneuronal system in the cat.
    Chesselet MF; Graybiel AM
    Neuroscience; 1986 Mar; 17(3):547-71. PubMed ID: 2422590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of striatal compartmentalization following pre- or postnatal dopamine depletion.
    Snyder-Keller AM
    J Neurosci; 1991 Mar; 11(3):810-21. PubMed ID: 1705970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.