These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 6152180)

  • 1. Fluorescence energy transfer measurements of spatial relationships between sulfhydryl groups of thiolase I from porcine heart.
    Izbicka E; Gilbert HF
    Biochemistry; 1984 Dec; 23(26):6383-8. PubMed ID: 6152180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple oxidation products of sulfhydryl groups near the active site of thiolase I from porcine heart.
    Izbicka-Dimitrijević E; Gilbert HF
    Biochemistry; 1984 Sep; 23(19):4318-24. PubMed ID: 6148962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two sulfhydryl groups near the active site of thiolase I from porcine heart: modification of thiolase with the fluorescent thiol reagent S-mercurio-N-dansyl-L-cysteine.
    Izbicka-Dimitrijević E; Gilbert HF
    Biochemistry; 1982 Nov; 21(24):6112-8. PubMed ID: 6129889
    [No Abstract]   [Full Text] [Related]  

  • 4. Examination of the role of thiolimidate formation in the cleavage of acetoacetyl-CoA catalyzed by thiolase I from porcine heart.
    Izbicka E; Gilbert HF
    Arch Biochem Biophys; 1989 Aug; 272(2):476-80. PubMed ID: 2568819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of thiolases from pig heart. Control of fatty acid oxidation in heart.
    Olowe Y; Schulz H
    Eur J Biochem; 1980 Aug; 109(2):425-9. PubMed ID: 6105961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of subsidiary catalytic groups at the active site of beta-ketoacyl-CoA thiolase by covalent modification of the protein.
    Salam WH; Bloxham DP
    Biochim Biophys Acta; 1986 Oct; 873(3):321-30. PubMed ID: 2875737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relation of acyl transfer to the overall reaction of thiolase I from porcine heart.
    Gilbert HF; Lennox BJ; Mossman CD; Carle WC
    J Biol Chem; 1981 Jul; 256(14):7371-7. PubMed ID: 6114098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of chloromethyl ketone derivatives of fatty acids. Their use as specific inhibitors of acetoacetyl-coenzyme A thiolase, cholesterol biosynthesis and fatty acid synthesis.
    Bloxham DP; Chalkley RA; Coghlin SJ; Salam W
    Biochem J; 1978 Dec; 175(3):999-1011. PubMed ID: 33667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of 4-pentenoic acid and inhibition of thiolase by metabolites of 4-pentenoic acid.
    Schulz H
    Biochemistry; 1983 Apr; 22(8):1827-32. PubMed ID: 6133549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of rat-liver mitochondrial acetyl-CoA acetyltransferase activity by a reversible chemical modification with coenzyme A.
    Quandt L; Huth W
    Biochim Biophys Acta; 1984 Jan; 784(2-3):168-76. PubMed ID: 6140956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanism of the chemical modification of the mitochondrial acetyl-CoA acetyltransferase by coenzyme A.
    Quandt L; Huth W
    Biochim Biophys Acta; 1985 May; 829(1):103-8. PubMed ID: 2859893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defect in biosynthesis of mitochondrial acetoacetyl-coenzyme A thiolase in cultured fibroblasts from a boy with 3-ketothiolase deficiency.
    Yamaguchi S; Orii T; Sakura N; Miyazawa S; Hashimoto T
    J Clin Invest; 1988 Mar; 81(3):813-7. PubMed ID: 2893809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Streptomyces collinus thiolase with novel acetyl-CoA:acyl carrier protein transacylase activity.
    Lobo S; Florova G; Reynolds KA
    Biochemistry; 2001 Oct; 40(39):11955-64. PubMed ID: 11570897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthetic thiolase from Zoogloea ramigera. II. Inactivation with haloacetyl CoA analogs.
    Davis JT; Chen HH; Moore R; Nishitani Y; Masamune S; Sinskey AJ; Walsh CT
    J Biol Chem; 1987 Jan; 262(1):90-6. PubMed ID: 2878928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetic mechanism and properties of the cytoplasmic acetoacetyl-coenzyme A thiolase from rat liver.
    Middleton B
    Biochem J; 1974 Apr; 139(1):109-21. PubMed ID: 4156910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific labeling and partial inactivation of cytochrome oxidase by fluorescein mercuric acetate.
    Stonehuerner J; O'Brien P; Kendrick L; Hall J; Millett F
    J Biol Chem; 1985 Sep; 260(21):11456-60. PubMed ID: 2995336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective inhibition of cholesterol synthesis by cell-free preparations of rat liver by using inhibitors of cytoplasmic acetoacetyl-coenzyme A thiolase.
    Bloxham DP
    Biochem J; 1975 Jun; 147(3):531-9. PubMed ID: 241330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Specific modification of the alpha-subunit of Escherichia coli Rna polymerase by monomercuric derivative of fluorescein mercuric acetate].
    Ozolin' ON; Uteshev TA; Kim IuA; Deev AA; Kamzolova SG
    Mol Biol (Mosk); 1990; 24(4):1057-66. PubMed ID: 2250672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneity of defects in mitochondrial acetoacetyl-CoA thiolase biosynthesis in fibroblasts from four patients with 3-ketothiolase deficiency.
    Nagasawa H; Yamaguchi S; Orii T; Schutgens RB; Sweetman L; Hashimoto T
    Pediatr Res; 1989 Aug; 26(2):145-9. PubMed ID: 2570398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The catalytic cycle of biosynthetic thiolase: a conformational journey of an acetyl group through four binding modes and two oxyanion holes.
    Kursula P; Ojala J; Lambeir AM; Wierenga RK
    Biochemistry; 2002 Dec; 41(52):15543-56. PubMed ID: 12501183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.