These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 6152703)
1. Mechanisms of regulation of the partition of fatty acids between oxidation and esterification in the liver. Zammit VA Prog Lipid Res; 1984; 23(1):39-67. PubMed ID: 6152703 [No Abstract] [Full Text] [Related]
2. Regulation of hepatic fatty acid oxidation and ketone body production. McGarry JD; Foster DW Annu Rev Biochem; 1980; 49():395-420. PubMed ID: 6157353 [No Abstract] [Full Text] [Related]
3. Effects of administration of di-(2-ethylhexyl)phthalate on rat liver mitochondria. Shindo Y; Osumi T; Hashimoto T Biochem Pharmacol; 1978; 27(23):2683-8. PubMed ID: 728223 [No Abstract] [Full Text] [Related]
6. Changes in the activities of the enzymes of hepatic fatty acid oxidation during development of the rat. Foster PC; Bailey E Biochem J; 1976 Jan; 154(1):49-56. PubMed ID: 6020 [TBL] [Abstract][Full Text] [Related]
7. Regulation of fatty acid utilization in heart. Role of the carnitine-acetyl-CoA transferase and carnitine-acetyl carnitine translocase system. Idell-Wenger JA; Grotyohann LW; Neely JR J Mol Cell Cardiol; 1982 Jul; 14(7):413-7. PubMed ID: 6816945 [No Abstract] [Full Text] [Related]
8. Molecular Regulation of Fatty Acid Oxidation in Skeletal Muscle during Aerobic Exercise. Lundsgaard AM; Fritzen AM; Kiens B Trends Endocrinol Metab; 2018 Jan; 29(1):18-30. PubMed ID: 29221849 [TBL] [Abstract][Full Text] [Related]
9. Effects of pantethine and its metabolites on fatty acid oxidation in rat liver mitochondria. Morisaki N; Matsuoka N; Saito Y; Kumagai A Tohoku J Exp Med; 1983 Sep; 141(1):33-9. PubMed ID: 6636147 [TBL] [Abstract][Full Text] [Related]
10. Intramitochondrial factors controlling hepatic fatty acid oxidation at weaning in the rat. Decaux JF; Robin D; Robin P; Ferré P; Girard J FEBS Lett; 1988 May; 232(1):156-8. PubMed ID: 2896605 [TBL] [Abstract][Full Text] [Related]
11. In support of the roles of malonyl-CoA and carnitine acyltransferase I in the regulation of hepatic fatty acid oxidation and ketogenesis. McGarry JD; Foster DW J Biol Chem; 1979 Sep; 254(17):8163-8. PubMed ID: 468816 [No Abstract] [Full Text] [Related]
12. Interaction of short-chain and branched-chain fatty acids and their carnitine and CoA esters and of various metabolites and agents with branched-chain 2-oxo acid oxidation in rat muscle and liver mitochondria. Veerkamp JH; van Moerkerk HT; Wagenmakers AJ Int J Biochem; 1985; 17(9):967-74. PubMed ID: 3934010 [TBL] [Abstract][Full Text] [Related]
13. [Regulation of biosynthesis and oxidation of fatty acids and glycerides at the cellular level in mammalian tissues]. Alimova EK; Astvatsatur'ian AT; Zharov LV Vopr Med Khim; 1974; 20(5):451-62. PubMed ID: 4156442 [No Abstract] [Full Text] [Related]
14. Insulin-independent and extremely rapid switch in the partitioning of hepatic fatty acids from oxidation to esterification in starved-refed diabetic rats. Possible roles for changes in cell pH and volume. Moir AM; Zammit VA Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):953-8. PubMed ID: 7848296 [TBL] [Abstract][Full Text] [Related]
15. Inhibition by acetyl-CoA of hepatic carnitine acyltransferase and fatty acid oxidation. McCormick K; Notar-Francesco VJ; Sriwatanakul K Biochem J; 1983 Nov; 216(2):499-502. PubMed ID: 6661211 [TBL] [Abstract][Full Text] [Related]
16. The role of carnitine in intracellular metabolism. Bremer J J Clin Chem Clin Biochem; 1990 May; 28(5):297-301. PubMed ID: 2199593 [TBL] [Abstract][Full Text] [Related]
17. Possible functions of short-chain and medium-chain carnitine acyltransferases. Bieber LL; Emaus R; Valkner K; Farrell S Fed Proc; 1982 Oct; 41(12):2858-62. PubMed ID: 7128832 [TBL] [Abstract][Full Text] [Related]
18. Effects of DL-2-bromopalmitoyl-CoA and bromoacetyl-CoA in rat liver and heart mitochondria. Inhibition of carnitine palmitoyltransferase and displacement of [14C]malonyl-CoA from mitochondrial binding sites. Edwards MR; Bird MI; Saggerson ED Biochem J; 1985 Aug; 230(1):169-79. PubMed ID: 4052034 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase and carnitine palmitoyltransferase II as potential control sites for ketogenesis during mitochondrion and peroxisome proliferation. Madsen L; Garras A; Asins G; Serra D; Hegardt FG; Berge RK Biochem Pharmacol; 1999 May; 57(9):1011-9. PubMed ID: 10796071 [TBL] [Abstract][Full Text] [Related]
20. Carnitine and carnitine palmitoyltransferase in fatty acid oxidation and ketosis. Hoppel CL Fed Proc; 1982 Oct; 41(12):2853-7. PubMed ID: 7128831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]