BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 6153387)

  • 1. Effect of 3,4-dihydroxybutyl-1-phosphonate on phosphoglyceride and lipoteichoic acid synthesis in Bacillus subtilis.
    Deutsch RM; Engel R; Tropp BE
    J Biol Chem; 1980 Feb; 255(4):1521-5. PubMed ID: 6153387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatidylglycerol as biosynthetic precursor for the poly(glycerol phosphate) backbone of bifidobacterial lipoteichoic acid.
    Op den Camp HJ; Oosterhof A; Veerkamp JH
    Biochem J; 1985 Jun; 228(3):683-8. PubMed ID: 4026803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Products of phosphatidylglycerol turnover in two Bacillus strains with and without lipoteichoic acid in the cells.
    Koga Y; Nishihara M; Morii H
    Biochim Biophys Acta; 1984 Mar; 793(1):86-94. PubMed ID: 6422993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of 3,4-dihydroxybutyl-1-phosphonate on cardiolipin synthesis in B. subtilis.
    Lacombe C; Lubochinsky B
    Biochim Biophys Acta; 1989 Sep; 1005(2):103-8. PubMed ID: 2550075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of murein lipoprotein in Escherichia coli: effects of 3,4-dihydroxybutyl-1-phosphonate.
    Chattopadhyay PK; Engel R; Tropp BE; Wu HC
    J Bacteriol; 1979 Jun; 138(3):944-8. PubMed ID: 378946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of 3,4-dihydroxybutyl-1-phosphonate, a glycerol 3-phosphate analogue, into the cell wall of Bacillus subtilis.
    Klein DA; Engel R; Tropp BE
    J Bacteriol; 1977 Jan; 129(1):550-3. PubMed ID: 401504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of teichoic acid synthesis during phosphate limitation.
    Glaser L; Loewy A
    J Bacteriol; 1979 Jan; 137(1):327-31. PubMed ID: 104964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode of elongation of the glycerol phosphate polymer of membrane lipoteichoic acid of Streptococcus faecium ATCC 9790.
    Cabacungan E; Pieringer RA
    J Bacteriol; 1981 Jul; 147(1):75-9. PubMed ID: 7240097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoglycerol-type wall and lipoteichoic acids are enantiomeric polymers differentiated by the stereospecific glycerophosphodiesterase GlpQ.
    Walter A; Unsleber S; Rismondo J; Jorge AM; Peschel A; Gründling A; Mayer C
    J Biol Chem; 2020 Mar; 295(12):4024-4034. PubMed ID: 32047114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and functions of linkage unit intermediates in the biosynthesis of ribitol teichoic acids in Staphylococcus aureus H and Bacillus subtilis W23.
    Yokoyama K; Miyashita T; Araki Y; Ito E
    Eur J Biochem; 1986 Dec; 161(2):479-89. PubMed ID: 3096735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis.
    Jerga A; Lu YJ; Schujman GE; de Mendoza D; Rock CO
    J Biol Chem; 2007 Jul; 282(30):21738-45. PubMed ID: 17535816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus.
    Koch HU; Haas R; Fischer W
    Eur J Biochem; 1984 Jan; 138(2):357-63. PubMed ID: 6697992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biosynthesis of nascent membrane lipoteichoic acid of Streptococcus faecium (S. faecalis ATCC 9790) from phosphatidylkojibiosyl diacylglycerol and phosphatidylglycerol.
    Ganfield MC; Pieringer RA
    J Biol Chem; 1980 Jun; 255(11):5164-9. PubMed ID: 6768734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro synthesis of the unit that links teichoic acid to peptidoglycan.
    Hancock I; Baddiley J
    J Bacteriol; 1976 Mar; 125(3):880-6. PubMed ID: 815251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation and inactivation of synthesis of secondary wall polymers in Bacillus subtilis W23.
    Hancock IC
    Arch Microbiol; 1983 Jun; 134(3):222-6. PubMed ID: 6311132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inhibition of phosphatidylglycerol synthesis in Escherichia coli by 3,4-dihydroxybutyl-1-phosphonate.
    Shopsis CS; Engel R; Tropp BE
    J Biol Chem; 1974 Apr; 249(8):2473-7. PubMed ID: 4595653
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation.
    Lazarevic V; Abellan FX; Möller SB; Karamata D; Mauël C
    Microbiology (Reading); 2002 Mar; 148(Pt 3):815-24. PubMed ID: 11882717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycerol 3-phosphate analogues as metabolic inhibitors in Escherichia coli, 3-hydroxy-4-oxobutyl-1-phosphonate, a drug that interferes with normal phosphoglyceride metabolism.
    Tang CT; Engel R; Tropp BE
    Biochim Biophys Acta; 1979 Mar; 572(3):472-82. PubMed ID: 373806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes.
    Wörmann ME; Corrigan RM; Simpson PJ; Matthews SJ; Gründling A
    Mol Microbiol; 2011 Feb; 79(3):566-83. PubMed ID: 21255105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane synthesis in Bacillus subtilis. I. Isolation and properties of strains bearing mutations in glycerol metabolism.
    Mindich L
    J Mol Biol; 1970 Apr; 49(2):415-32. PubMed ID: 4988527
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.