BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 6153716)

  • 1. Relaxation of bovine coronary arterial smooth muscle by cyclic GMP, cyclic AMP and analogs.
    Napoli SA; Gruetter CA; Ignarro LJ; Kadowitz PJ
    J Pharmacol Exp Ther; 1980 Mar; 212(3):469-73. PubMed ID: 6153716
    [No Abstract]   [Full Text] [Related]  

  • 2. Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips.
    Holzmann S
    J Cyclic Nucleotide Res; 1982; 8(6):409-19. PubMed ID: 6309931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery.
    Ignarro LJ; Burke TM; Wood KS; Wolin MS; Kadowitz PJ
    J Pharmacol Exp Ther; 1984 Mar; 228(3):682-90. PubMed ID: 6323677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of phosphodiesterase inhibitors on cyclic nucleotide levels and relaxation of pig coronary arteries.
    Kramer GL; Wells JN
    Mol Pharmacol; 1979 Nov; 16(3):813-22. PubMed ID: 231194
    [No Abstract]   [Full Text] [Related]  

  • 5. Mode of action of coronary arterial relaxation by prostacyclin.
    Holzmann S; Kukovetz WR; Schmidt K
    J Cyclic Nucleotide Res; 1980; 6(6):451-60. PubMed ID: 6163806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function of cyclic GMP in acetylcholine-induced contraction of coronary smooth muscle.
    Kukovetz WR; Holzmann S; Pöch G
    Naunyn Schmiedebergs Arch Pharmacol; 1982 Apr; 319(1):29-33. PubMed ID: 6287297
    [No Abstract]   [Full Text] [Related]  

  • 7. Relationship between cyclic guanosine 3':5'-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: effects of methylene blue and methemoglobin.
    Gruetter CA; Gruetter DY; Lyon JE; Kadowitz PJ; Ignarro LJ
    J Pharmacol Exp Ther; 1981 Oct; 219(1):181-6. PubMed ID: 6270297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of the protein phosphatases inhibitor cantharidin on beta-adrenoceptor-mediated vasorelaxation.
    Knapp J; Bokník P; Linck B; Lüss H; Müller FU; Nacke P; Neumann J; Vahlensieck U; Schmitz W
    Br J Pharmacol; 1997 Feb; 120(3):421-8. PubMed ID: 9031745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration and time-dependent relationships between isosorbide dinitrate-induced relaxation and formation of cyclic GMP in coronary arterial smooth muscle.
    Galvas PE; DiSalvo J
    J Pharmacol Exp Ther; 1983 Feb; 224(2):373-8. PubMed ID: 6130144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Adenosine-3',5'-monophosphate content and muscle tension in isolated coronary arteries under the effect of lanthanum ions].
    Fermum R; Möritz KU; Schäfer U; Leibelt M
    Biomed Biochim Acta; 1984; 43(11):1285-94. PubMed ID: 6085268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate levels and contractility in bovine tracheal smooth muscle.
    Katsuki S; Murad F
    Mol Pharmacol; 1977 Mar; 13(2):330-41. PubMed ID: 16208
    [No Abstract]   [Full Text] [Related]  

  • 12. Role of Na(+)-K+ ATPase in cyclic GMP-mediated relaxation of canine pulmonary artery smooth muscle cells.
    Tamaoki J; Tagaya E; Nishimura K; Isono K; Nagai A
    Br J Pharmacol; 1997 Sep; 122(1):112-6. PubMed ID: 9298536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The relaxation of the coronary artery smooth muscles under the action of a high-potassium solution].
    Nikitina EI
    Fiziol Zh SSSR Im I M Sechenova; 1990 Jan; 76(1):80-6. PubMed ID: 2159917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible role for cyclic GMP in endothelium-dependent relaxation of rabbit aorta by acetylcholine. Comparison with nitroglycerin.
    Diamond J; Chu EB
    Res Commun Chem Pathol Pharmacol; 1983 Sep; 41(3):369-81. PubMed ID: 6314456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible role of cyclic-GMP-dependent protein kinase in vascular smooth muscle function.
    Lincoln TM; Johnson RM
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():285-96. PubMed ID: 6328920
    [No Abstract]   [Full Text] [Related]  

  • 16. Relaxation of Mytilus catch muscle by 8-bromo-cyclic GMP and related compounds.
    Matsuura M
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 78(1):111-6. PubMed ID: 6204810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of chronic treatment with trandolapril on cyclic AMP-and cyclic GMP-dependent relaxations in aortic segments of rats with chronic heart failure.
    Toyoshima H; Nasa Y; Kohsaka Y; Isayama Y; Yamaguchi F; Sanbe A; Takeo S
    Br J Pharmacol; 1998 Jan; 123(2):344-52. PubMed ID: 9489624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between cyclic nucleotide levels and drug-induced relaxation of smooth muscle.
    Janis RA; Diamond J
    J Pharmacol Exp Ther; 1979 Dec; 211(3):480-4. PubMed ID: 229208
    [No Abstract]   [Full Text] [Related]  

  • 19. Relaxation of intrapulmonary artery and vein by nitrogen oxide-containing vasodilators and cyclic GMP.
    Edwards JC; Ignarro LJ; Hyman AL; Kadowitz PJ
    J Pharmacol Exp Ther; 1984 Jan; 228(1):33-42. PubMed ID: 6319670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxation of vascular smooth muscle by isoproterenol, dibutyryl-cyclic AMP and theophylline.
    Webb RC; Bohr DF
    J Pharmacol Exp Ther; 1981 Apr; 217(1):26-35. PubMed ID: 6259328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.