BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 6153718)

  • 1. Effect of measured calcium chloride injections on the membrane potential and internal pH of snail neurones.
    Meech RW; Thomas RC
    J Physiol; 1980 Jan; 298():111-29. PubMed ID: 6153718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of injection of calcium ions and calcium chelators on calcium channel inactivation in Helix neurones.
    Plant TD; Standen NB; Ward TA
    J Physiol; 1983 Jan; 334():189-212. PubMed ID: 6306229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of calcium injection on the intracellular sodium and pH of snail neurones.
    Meech RW; Thomas RC
    J Physiol; 1977 Mar; 265(3):867-79. PubMed ID: 16126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of HCl and CaCl(2) injections on intracellular calcium and pH in voltage-clamped snail (Helix aspersa) neurons.
    Thomas RC
    J Gen Physiol; 2002 Oct; 120(4):567-79. PubMed ID: 12356857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones.
    Thomas RC
    J Physiol; 1976 Mar; 255(3):715-35. PubMed ID: 4614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free calcium ions in neurones of Helix aspersa measured with ion-selective micro-electrodes.
    Alvarez-Leefmans FJ; Rink TJ; Tsien RY
    J Physiol; 1981 Jun; 315():531-48. PubMed ID: 6273543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sensitivity of Helix aspersa neurones to injected calcium ions.
    Meech RW
    J Physiol; 1974 Mar; 237(2):259-77. PubMed ID: 4825448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-dependent intracellular pH in Helix aspersa neurones.
    Meech RW; Thomas RC
    J Physiol; 1987 Sep; 390():433-52. PubMed ID: 2450997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the delayed outward potassium currents in bursting pace-maker neurones of the snail, Helix pomatia.
    Heyer CB; Lux HD
    J Physiol; 1976 Nov; 262(2):349-82. PubMed ID: 994042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between intracellular calcium and its muffling measured by calcium iontophoresis in snail neurones.
    Schwiening CJ; Thomas RC
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):621-33. PubMed ID: 8815198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of intracellular calcium and modulation of membrane currents by caffeine in bull-frog sympathetic neurones.
    Marrion NV; Adams PR
    J Physiol; 1992 Jan; 445():515-35. PubMed ID: 1380086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the mechanisms controlling intracellular pH and sodium in snail neurones.
    Thomas RC
    Respir Physiol; 1978 Apr; 33(1):63-73. PubMed ID: 27848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of extracellular weak acids and bases on the intracellular buffering power of snail neurones.
    Szatkowski MS
    J Physiol; 1989 Feb; 409():103-20. PubMed ID: 2555474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium/calcium exchange and intracellular calcium buffering in ferret myocardium: an ion-sensitive micro-electrode study.
    Chapman RA
    J Physiol; 1986 Apr; 373():163-79. PubMed ID: 2427694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of calcium pump inhibitors on the response of intracellular calcium to caffeine in snail neurones.
    Collins RO; Thomas RC
    Cell Calcium; 2001 Jul; 30(1):41-8. PubMed ID: 11396986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruthenium red-mediated inhibition of large-conductance Ca2+-activated K+ channels in rat pituitary GH3 cells.
    Wu SN; Jan CR; Li HF
    J Pharmacol Exp Ther; 1999 Sep; 290(3):998-1005. PubMed ID: 10454470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmembrane outward hydrogen current in intracellularly perfused neurones of the snail Helix pomatia.
    Doroshenko PA; Kostyuk PG; Martynyuk AE
    Gen Physiol Biophys; 1986 Aug; 5(4):337-50. PubMed ID: 3021566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of caffeine on sodium transport, membrane potential, mechanical tension and ultrastructure in barnacle muscle fibres.
    Bittar EE; Hift H; Huddart H; Tong E
    J Physiol; 1974 Oct; 242(1):1-34. PubMed ID: 4373569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The intrinsic intracellular H+ buffering power of snail neurones.
    Szatkowski MS; Thomas RC
    J Physiol; 1989 Feb; 409():89-101. PubMed ID: 2585301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fall in intracellular pH and increase in resting tension induced by a mitochondrial uncoupling agent in crayfish muscle.
    Kaila K; Mattsson K; Voipio J
    J Physiol; 1989 Jan; 408():271-93. PubMed ID: 2778730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.