These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 6153907)
1. The lowest conductance state of the alamethicin pore. Hanke W; Boheim G Biochim Biophys Acta; 1980 Mar; 596(3):456-62. PubMed ID: 6153907 [TBL] [Abstract][Full Text] [Related]
2. Dipole moment of alamethicin as related to voltage-dependent conductance in lipid bilayers. Yantorno R; Takashima S; Mueller P Biophys J; 1982 May; 38(2):105-10. PubMed ID: 7093416 [TBL] [Abstract][Full Text] [Related]
3. "Reversed" alamethicin conductance in lipid bilayers. Taylor RJ; de Levie R Biophys J; 1991 Apr; 59(4):873-9. PubMed ID: 1712238 [TBL] [Abstract][Full Text] [Related]
4. Pressure effects on alamethicin conductance in bilayer membranes. Bruner LJ; Hall JE Biophys J; 1983 Oct; 44(1):39-47. PubMed ID: 6626678 [TBL] [Abstract][Full Text] [Related]
5. Alamethicin-induced conductances in lipid bilayers: I. Data analysis and simple steady-state model. Fleischmann M; Gabrielli C; Labram MT; McMullen AI; Wilmshurst TH J Membr Biol; 1980 Jun; 55(1):9-27. PubMed ID: 7401170 [TBL] [Abstract][Full Text] [Related]
6. The effect of lanthanum on alamethicin channels in black lipid bilayers. Gögelein H; De Smedt H; Van Driessche W; Borghgraef R Biochim Biophys Acta; 1981 Jan; 640(1):185-94. PubMed ID: 6260169 [TBL] [Abstract][Full Text] [Related]
7. Calcium-induced inactivation of alamethicin in asymmetric lipid bilayers. Hall JE; Cahalan MD J Gen Physiol; 1982 Mar; 79(3):387-409. PubMed ID: 7077290 [TBL] [Abstract][Full Text] [Related]
8. A three state model for alamethicin conductance in bilayer membranes. Bruner LJ J Theor Biol; 1985 Nov; 117(2):265-76. PubMed ID: 4079449 [TBL] [Abstract][Full Text] [Related]
9. Imaging multiple conductance states in an alamethicin pore. Harriss LM; Cronin B; Thompson JR; Wallace MI J Am Chem Soc; 2011 Sep; 133(37):14507-9. PubMed ID: 21848341 [TBL] [Abstract][Full Text] [Related]
10. Lipid phase transition in planar bilayer membrane and its effect on carrier- and pore-mediated ion transport. Boheim G; Hanke W; Eibl H Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3403-7. PubMed ID: 6158046 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis. Mak DO; Webb WW Biophys J; 1995 Dec; 69(6):2337-49. PubMed ID: 8599640 [TBL] [Abstract][Full Text] [Related]
12. The effect of free radicals on the conductance induced by alamethicin in planar lipid membranes: activation and inactivation. Zeidler U; Wilhelm M; Stark G Biochim Biophys Acta; 1996 May; 1281(1):73-9. PubMed ID: 8652608 [TBL] [Abstract][Full Text] [Related]
16. Two classes of alamethicin transmembrane channels: molecular models from single-channel properties. Mak DO; Webb WW Biophys J; 1995 Dec; 69(6):2323-36. PubMed ID: 8599639 [TBL] [Abstract][Full Text] [Related]
17. Kinetics and stability of alamethicin conducting channels in lipid bilayers. Gordon LG; Haydon DA Biochim Biophys Acta; 1976 Jul; 436(3):541-56. PubMed ID: 952910 [TBL] [Abstract][Full Text] [Related]
18. Alamethicin-induced single channel conductance fluctuations in biological membranes. Sakmann B; Boheim G Nature; 1979 Nov; 282(5736):336-9. PubMed ID: 503211 [No Abstract] [Full Text] [Related]
19. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers. Cukierman S; Quigley EP; Crumrine DS Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442 [TBL] [Abstract][Full Text] [Related]
20. Angiotensin II-induced formation of ionic channels in bilayer lipid membranes. Hianik T; Laputková G Gen Physiol Biophys; 1991 Feb; 10(1):19-30. PubMed ID: 1714413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]