These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 615393)

  • 21. Changes in molluscan neurosecretory cells during reproductive cessation: cause or effect?
    Janse C
    Acta Biol Hung; 2000; 51(2-4):255-64. PubMed ID: 11034150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrophysiology of the neurosecretory cell.
    Yagi K
    Int Rev Cytol; 1977; 48():141-86. PubMed ID: 14084
    [No Abstract]   [Full Text] [Related]  

  • 23. Proceedings: Control mechanisms of neurosecretory cell activity in the freshwater snail, Lymnaea stagnalis.
    Roubos EW; Boer HH
    J Endocrinol; 1975 Mar; 64(3):61P-62P. PubMed ID: 1169284
    [No Abstract]   [Full Text] [Related]  

  • 24. Locomotor rhythms in the pond snail Lymnaea stagnalis: site of origin and neurotransmitter requirements.
    Tsyganov VV; Sakharov DA
    Acta Biol Hung; 2000; 51(2-4):189-95. PubMed ID: 11034143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation in firing pattern and oscillation in nerve cells of Lymnaea during network reconstruction.
    Rózsa KS
    Acta Biol Hung; 2000; 51(2-4):211-30. PubMed ID: 11034146
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphology of neurosecretory cells in basommatophoran snails homologous with egg-laying and growth hormone-producing cells of Lymnaea stagnalis.
    Roubos EW; van de Ven AM
    Gen Comp Endocrinol; 1987 Jul; 67(1):7-23. PubMed ID: 3623071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Karyometric analysis of selected neurohormonal cells of the snail Lymnaea stagnalis (L.) under conditions of natural infection with digenetic trematode parthenites].
    Pokora Z; Szilman P
    Wiad Parazytol; 1995; 41(1):53-62. PubMed ID: 7638964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological and pharmacological identification of neurons in the central nervous system of Helix pomatia L.
    Sakharov DA; Salánki J
    Acta Physiol Acad Sci Hung; 1969; 35(1):19-30. PubMed ID: 5792208
    [No Abstract]   [Full Text] [Related]  

  • 29. The effect of lidocaine on cholinergic neurotransmission in an identified reconstructed synapse.
    Onizuka S; Kasaba T; Takasaki M
    Anesth Analg; 2008 Oct; 107(4):1236-42. PubMed ID: 18806033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Age-related decrease in electrical coupling of two identified neurons in the mollusc Lymnaea stagnalis.
    Janse C; van der Roest M; Slob W
    Brain Res; 1986 Jun; 376(1):208-12. PubMed ID: 3719369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Changes in the response to the extracellular application of acetylcholine during the intracellular perfusion of isolated neurons with biogenic amines].
    Turpaev TM; Iurchenko OP; Grigor'ev NG
    Dokl Akad Nauk SSSR; 1985; 280(6):1495-8. PubMed ID: 2859154
    [No Abstract]   [Full Text] [Related]  

  • 32. The morphology of neurosecretory neurones in the pond snail, Lymnaea stagnalis, by the injection of Procion Yellow and horseradish peroxidase.
    Benjamin PR; Slade CT; Soffe SR
    Philos Trans R Soc Lond B Biol Sci; 1980 Aug; 290(1042):449-78. PubMed ID: 6107940
    [No Abstract]   [Full Text] [Related]  

  • 33. [Dopamine modification of the Ca-component of the action potential in the neuron soma of the mollusk L. stagnalis].
    Akopian AR; Il'in VI; Chemeris NK
    Biofizika; 1984; 29(2):284-8. PubMed ID: 6326858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship between neurosecretory activity and staining properties in a neurosecretory cell-pair of the suboesophageal ganglion of the cricket Teleogryllus commodus (Walker).
    Ogrisegg B; Pohlhammer K
    Z Mikrosk Anat Forsch; 1985; 99(2):321-6. PubMed ID: 2411059
    [No Abstract]   [Full Text] [Related]  

  • 35. LFRFamides: a novel family of parasitation-induced -RFamide neuropeptides that inhibit the activity of neuroendocrine cells in Lymnaea stagnalis.
    Hoek RM; Li KW; van Minnen J; Lodder JC; de Jong-Brink M; Smit AB; van Kesteren RE
    J Neurochem; 2005 Mar; 92(5):1073-80. PubMed ID: 15715658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Changes in neuronal excitability elicited by subthreshold depolarization as a possible mechanism of interval-selective interrelations in the central nervous system].
    Vartanian GA; Pirogov AA; Konstantinov KV
    Neirofiziologiia; 1989; 21(3):291-9. PubMed ID: 2770910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane mechanism of neuroendocrine caudo-dorsal cell inhibition by the ring neuron in the pond snail Lymnaea stagnalis.
    Jansen RF; ter Maat A; Bos NP
    J Neurobiol; 1985 Jan; 16(1):15-26. PubMed ID: 2580946
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal and non-neuronal control of the neurosecretory caudo-dorsal cells of the freshwater snail Lymnaea stagnalis (L.).
    Roubos EW
    Cell Tissue Res; 1976 Apr; 168(1):11-31. PubMed ID: 944620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The effect of serotonin and acetylcholine on different neurons of the snail central nervous system].
    Korobtsov GN; Sakharov DA
    Neirofiziologiia; 1974; 6(6):644-51. PubMed ID: 4431538
    [No Abstract]   [Full Text] [Related]  

  • 40. [Investigations on the pathogenesis of changes in somatic growth of Lymnaea stagnalis (Gastropoda: Pulmonata) experimentally infected with parthenites Opisthioglyphe ranae (Digenea: Plagiorchiida). I. Relative weight of accessory sex organs and synthetic activity of neurosecretory cells].
    Pokora Z
    Wiad Parazytol; 1996; 42(1):71-80. PubMed ID: 8755148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.