BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 6154457)

  • 1. Respiration-dependent calcium ion uptake by two preparations of cardiac mitochondria. Effects of palmitoyl-coenzyme A and palmitoylcarnitine on calcium ion cycling and nicotinamide nucleotide reduction state.
    Wolkowicz PE; McMillin-Wood J
    Biochem J; 1980 Jan; 186(1):257-66. PubMed ID: 6154457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of palmitoyl CoA and palmitoyl carnitine on the membrane potential and Mg2+ content of rat heart mitochondria.
    Siliprandi D; Biban C; Testa S; Toninello A; Siliprandi N
    Mol Cell Biochem; 1992 Oct; 116(1-2):117-23. PubMed ID: 1282667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of palmityl coenzyme A and palmitylcarnitine on phosphorylating respiration in heart mitochondria.
    Wood JM
    Arch Biochem Biophys; 1978 Jan; 185(2):352-61. PubMed ID: 626500
    [No Abstract]   [Full Text] [Related]  

  • 4. Mitochondrial Ca2+ fluxes: role of free fatty acids, acyl-CoA and acylcarnitine.
    De Villiers M; Lochner A
    Biochim Biophys Acta; 1986 Apr; 876(2):309-17. PubMed ID: 3955069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the capacity of the beta-oxidation of palmitate and palmitoyl-esters in rat liver mitochondria.
    Farstad M; Berge R
    Acta Physiol Scand; 1978 Nov; 104(3):337-48. PubMed ID: 31061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of palmitoylcarnitine oxidation in isolated rat liver mitochondria. Role of the redox state of NAD(H).
    Latipää PM; Kärki TT; Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1986 Feb; 875(2):293-300. PubMed ID: 3002483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential regulation of calcium-dependent and calcium-independent cyclic nucleotide phosphodiesterases from heart by palmitoylcarnitine and palmitoyl coenzyme A.
    Katoh N; Helfman DM; Wrenn RW; Kuo JF
    Biochim Biophys Acta; 1982 Jan; 714(1):129-35. PubMed ID: 6275902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation between mitochondria calcium ion release and pyridine nucleotide oxidation.
    Wolkowicz PE; McMillin-Wood J
    J Biol Chem; 1980 Nov; 255(21):10348-53. PubMed ID: 7430127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of palmitoyl-CoA inhibition of Ca2+ uptake in liver and heart mitochondria.
    Beatrice MC; Pfeiffer DR
    Biochem J; 1981 Jan; 194(1):71-7. PubMed ID: 7305993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palmitoyl carnitine: an endogenous promotor of calcium efflux from rat heart mitochondria.
    Baydoun AR; Markham A; Morgan RM; Sweetman AJ
    Biochem Pharmacol; 1988 Aug; 37(16):3103-7. PubMed ID: 2900007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the mode of addition of acyl-CoA on the initial rate of formation of acylcarnitine in the presence of carnitine by intact rat liver mitochondria in vitro.
    Zammit VA
    Biochem J; 1985 Jul; 229(1):273-5. PubMed ID: 4038262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria.
    Ashour B; Hansford RG
    Biochem J; 1983 Sep; 214(3):725-36. PubMed ID: 6138029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of the adenine nucleotide translocator by matrix-localized palmityl-CoA in rat heart mitochondria.
    Paulson DJ; Shug AL
    Biochim Biophys Acta; 1984 Jul; 766(1):70-6. PubMed ID: 6331504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+-mediated action of long-chain acyl-CoA on liver mitochondria energy-linked processes.
    Di Lisa F; Menabò R; Miotto G; Bobyleva-Guarriero V; Siliprandi N
    Biochim Biophys Acta; 1989 Feb; 973(2):185-8. PubMed ID: 2465024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palmitoyl-carnitine increases RyR2 oxidation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes: Role of adenine nucleotide translocase.
    Roussel J; Thireau J; Brenner C; Saint N; Scheuermann V; Lacampagne A; Le Guennec JY; Fauconnier J
    Biochim Biophys Acta; 2015 May; 1852(5):749-58. PubMed ID: 25619687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The uptake and release of calcium by heart mitochondria.
    Harris EJ
    Biochem J; 1977 Dec; 168(3):447-56. PubMed ID: 204287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the relationship between the uncoupler-induced efflux of K+ from heart mitochondria and the oxidation-reduction state of pyridine nucleotides.
    Jung DW; Brierley GP
    J Biol Chem; 1981 Oct; 256(20):10490-6. PubMed ID: 6169721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of 2[5(4-chlorophenyl)pentyl]oxirane-2-carbonyl-Co-A on mitochondrial oxidations.
    Turnbull DM; Bartlett K; Younan SI; Sherratt HS
    Biochem Pharmacol; 1984 Feb; 33(3):475-81. PubMed ID: 6704164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acyl-CoA-induced generation of reactive oxygen species in mitochondrial preparations is due to the presence of peroxisomes.
    Schönfeld P; Dymkowska D; Wojtczak L
    Free Radic Biol Med; 2009 Sep; 47(5):503-9. PubMed ID: 19442717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of fatty acid beta-oxidation in rat heart mitochondria.
    Wang HY; Baxter CF; Schulz H
    Arch Biochem Biophys; 1991 Sep; 289(2):274-80. PubMed ID: 1898072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.