These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 6154668)
1. The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Quigley HA; Flower RW; Addicks EM; McLeod DS Invest Ophthalmol Vis Sci; 1980 May; 19(5):505-17. PubMed ID: 6154668 [TBL] [Abstract][Full Text] [Related]
2. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Quigley HA; Addicks EM Invest Ophthalmol Vis Sci; 1980 Feb; 19(2):137-52. PubMed ID: 6153173 [TBL] [Abstract][Full Text] [Related]
3. Distribution of axonal transport blockade by acute intraocular pressure elevation in the primate optic nerve head. Quigley HA; Anderson DR Invest Ophthalmol Vis Sci; 1977 Jul; 16(7):640-4. PubMed ID: 68942 [TBL] [Abstract][Full Text] [Related]
4. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Minckler DS; Bunt AH; Johanson GW Invest Ophthalmol Vis Sci; 1977 May; 16(5):426-41. PubMed ID: 67096 [TBL] [Abstract][Full Text] [Related]
5. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Quigley H; Anderson DR Invest Ophthalmol; 1976 Aug; 15(8):606-16. PubMed ID: 60300 [TBL] [Abstract][Full Text] [Related]
6. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Pease ME; McKinnon SJ; Quigley HA; Kerrigan-Baumrind LA; Zack DJ Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):764-74. PubMed ID: 10711692 [TBL] [Abstract][Full Text] [Related]
7. Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma. Martin KR; Quigley HA; Valenta D; Kielczewski J; Pease ME Exp Eye Res; 2006 Aug; 83(2):255-62. PubMed ID: 16546168 [TBL] [Abstract][Full Text] [Related]
8. Breakdown of the normal optic nerve head blood-brain barrier following acute elevation of intraocular pressure in experimental animals. Radius RL; Anderson DR Invest Ophthalmol Vis Sci; 1980 Mar; 19(3):244-55. PubMed ID: 6153639 [TBL] [Abstract][Full Text] [Related]
9. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Quigley HA; McKinnon SJ; Zack DJ; Pease ME; Kerrigan-Baumrind LA; Kerrigan DF; Mitchell RS Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3460-6. PubMed ID: 11006239 [TBL] [Abstract][Full Text] [Related]
10. Selective effects of experimental glaucoma on axonal transport by retinal ganglion cells to the dorsal lateral geniculate nucleus. Dandona L; Hendrickson A; Quigley HA Invest Ophthalmol Vis Sci; 1991 Apr; 32(5):1593-9. PubMed ID: 1707861 [TBL] [Abstract][Full Text] [Related]
11. Failure of increased intracranial pressure to affect rapid axonal transport at the optic nerve head. Anderson DR; Hendrickson AE Invest Ophthalmol Vis Sci; 1977 May; 16(5):423-6. PubMed ID: 67095 [TBL] [Abstract][Full Text] [Related]
12. Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Chauhan BC; Pan J; Archibald ML; LeVatte TL; Kelly ME; Tremblay F Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):2969-76. PubMed ID: 12202517 [TBL] [Abstract][Full Text] [Related]
13. Change in the optic disc and nerve fiber layer estimated with the glaucoma-scope in monkey eyes. Quigley HA; Pease ME J Glaucoma; 1996 Apr; 5(2):106-16. PubMed ID: 8795742 [TBL] [Abstract][Full Text] [Related]
15. Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure. Balaratnasingam C; Morgan WH; Bass L; Matich G; Cringle SJ; Yu DY Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3632-44. PubMed ID: 17652733 [TBL] [Abstract][Full Text] [Related]
16. Retrograde axonal transport obstruction of brain-derived neurotrophic factor (BDNF) and its TrkB receptor in the retina and optic nerve of American Cocker Spaniel dogs with spontaneous glaucoma. Iwabe S; Moreno-Mendoza NA; Trigo-Tavera F; Crowder C; García-Sánchez GA Vet Ophthalmol; 2007; 10 Suppl 1():12-9. PubMed ID: 17973830 [TBL] [Abstract][Full Text] [Related]
17. Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. Geijer C; Bill A Invest Ophthalmol Vis Sci; 1979 Oct; 18(10):1030-42. PubMed ID: 90027 [No Abstract] [Full Text] [Related]
18. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Anderson DR; Hendrickson A Invest Ophthalmol; 1974 Oct; 13(10):771-83. PubMed ID: 4137635 [No Abstract] [Full Text] [Related]
19. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, II: Structural measures. Hare WA; WoldeMussie E; Weinreb RN; Ton H; Ruiz G; Wijono M; Feldmann B; Zangwill L; Wheeler L Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2640-51. PubMed ID: 15277487 [TBL] [Abstract][Full Text] [Related]
20. Glial cell response and iNOS expression in the optic nerve head and retina of the rat following acute high IOP ischemia-reperfusion. Cho KJ; Kim JH; Park HY; Park CK Brain Res; 2011 Jul; 1403():67-77. PubMed ID: 21704308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]