These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 6154698)

  • 1. Hormonal control of Na+-K+ co-transport in turkey erythrocytes. Multiple site phosphorylation of goblin, a high molecular weight protein of the plasma membrane.
    Alper SL; Beam KG; Greengard P
    J Biol Chem; 1980 May; 255(10):4864-71. PubMed ID: 6154698
    [No Abstract]   [Full Text] [Related]  

  • 2. Hormonal control of protein phosphorylation in turkey erythrocytes. Phosphorylation by cAMP-dependent and Ca2+-dependent protein kinases of distinct sites in goblin, a high molecular weight protein of the plasma membrane.
    Alper SL; Palfrey HC; DeRiemer SA; Greengard P
    J Biol Chem; 1980 Nov; 255(22):11029-39. PubMed ID: 6253498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein phosphorylation and the regulation of cation cotransport.
    Palfrey HC; Alper SL; Greengard P
    J Exp Biol; 1980 Dec; 89():103-15. PubMed ID: 6259269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the Na(+)-K+ pump in frog erythrocytes by catecholamines and phosphodiesterase blockers.
    Gusev GP; Agalakova NI; Lapin AV
    Biochem Pharmacol; 1996 Nov; 52(9):1347-53. PubMed ID: 8937444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of catecholamines and prostaglandin E1 on cyclic AMP, cation fluxes, and protein phosphorylation in the frog erythrocyte.
    Rudolph SA; Greengard P
    J Biol Chem; 1980 Sep; 255(18):8534-40. PubMed ID: 6157687
    [No Abstract]   [Full Text] [Related]  

  • 6. Adrenergic stimulation of membrane protein phosphorylation in human erythrocytes.
    Nelson MJ; Ferrell JE; Huestis WH
    Biochim Biophys Acta; 1979 Nov; 558(1):136-40. PubMed ID: 91385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of cyclic nucleotides and icosanoids on Na+ and K+ transport in human red cells.
    Garay R; Nazaret C; Diez J; Dagher G; Hannaert P; Braquet P
    Biomed Biochim Acta; 1983; 42(11-12):S53-7. PubMed ID: 6202301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cholera enterotoxin on catecholamine-stimulated changes in cation fluxes, cell volume, and cyclic AMP levels in the turkey erythrocyte.
    Rudolph SA; Schafer DE; Greengard P
    J Biol Chem; 1977 Oct; 252(20):7132-9. PubMed ID: 198401
    [No Abstract]   [Full Text] [Related]  

  • 9. Stimulation of sodium transport in turkey erythrocytes by cyclic 3',5'-AMP.
    Gardner JD; Klaeveman HL; Bilezikian JP; Aurbach GD
    Endocrinology; 1974 Aug; 95(2):499-507. PubMed ID: 4369216
    [No Abstract]   [Full Text] [Related]  

  • 10. Hormonally regulated phosphoprotein of turkey erythrocytes: localization to plasma membrane.
    Beam KG; Alper SL; Palade GE; Greengard P
    J Cell Biol; 1979 Oct; 83(1):1-15. PubMed ID: 229109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of beta-adrenergic catecholamines on potassium transport in turkey erythrocytes.
    Gardner JD; Mensh RS; Kiino DR; Aurbach GD
    J Biol Chem; 1975 Feb; 250(4):1155-63. PubMed ID: 234447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of protein phosphorylation and membrane permeability by beta-adrenergic agents and cyclic adenosine 3':5'-monophosphate in the avian erythrocyte.
    Rudolph SA; Greengard P
    J Biol Chem; 1974 Sep; 249(17):5684-7. PubMed ID: 4370325
    [No Abstract]   [Full Text] [Related]  

  • 13. Active calcium transport in human red cells.
    Sarkadi B
    Biochim Biophys Acta; 1980 Sep; 604(2):159-90. PubMed ID: 6252968
    [No Abstract]   [Full Text] [Related]  

  • 14. [Na, K-Pump activation by isoproterenol, methylxanthines, and iodoacetate in erythrocytes of the frog Rana temporaria].
    Gusev GP; Agalakova NI
    Zh Evol Biokhim Fiziol; 2000; 36(2):106-11. PubMed ID: 10925849
    [No Abstract]   [Full Text] [Related]  

  • 15. Inhibition by isoproterenol of the passive potassium efflux from pigeon erythrocytes.
    Leskovac V; Pericin D; Trivić S; Stupar M; Murgul L
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 78(2):475-8. PubMed ID: 6149099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of cyclic AMP on Na+ and K+ transport systems in mouse macrophages.
    Diez J; Braquet P; Verna R; Nazaret C; Garay RP
    Experientia; 1985 May; 41(5):666-7. PubMed ID: 2581803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the guanine nucleotide exchange reaction in the regulation of the beta-adrenergic receptor and in the actions of catecholamines and cholera toxin on adenylate cyclase in turkey erythrocyte membranes.
    Lad PM; Nielsen TB; Preston MS; Rodbell M
    J Biol Chem; 1980 Feb; 255(3):988-95. PubMed ID: 6243304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refractoriness of cation transport in turkey erythrocytes to stimulation by cyclic adenosine 3':5'-monophosphate.
    Gardner JD; Jow N; Kiino DR
    J Biol Chem; 1975 Feb; 250(4):1176-85. PubMed ID: 163246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The regulation of Na/K/2Cl cotransport and bumetanide binding in avian erythrocytes by protein phosphorylation and dephosphorylation. Effects of kinase inhibitors and okadaic acid.
    Pewitt EB; Hegde RS; Haas M; Palfrey HC
    J Biol Chem; 1990 Dec; 265(34):20747-56. PubMed ID: 2147426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of the Na+/K+ cotransport system by cyclic AMP and intracellular Ca2+ in human red cells.
    Garay RP; Ciccone J
    Biochim Biophys Acta; 1982 Jun; 688(3):786-92. PubMed ID: 6288092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.