BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 6155344)

  • 1. Analysis of the lytic step in the herpes simplex virus antibody-dependent cellular cytotoxicity system.
    Shore SL; Romano TJ
    Infect Immun; 1980 Apr; 28(1):137-46. PubMed ID: 6155344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the adhesion step in the herpes simplex virus antibody-dependent cellular cytotoxicity system.
    Romano TJ; Shore SL
    Infect Immun; 1979 Oct; 26(1):163-72. PubMed ID: 227791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The involvement of the cytoskeleton during antibody-dependent cellular cytotoxicity (ADCC).
    Balazovich KJ; Lopez DM; Bourguignon LY
    Cell Biol Int Rep; 1984 Nov; 8(11):923-38. PubMed ID: 6542457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal regulation of Caco-2 intestinal monolayer paracellular permeability.
    Ma TY; Hollander D; Tran LT; Nguyen D; Hoa N; Bhalla D
    J Cell Physiol; 1995 Sep; 164(3):533-45. PubMed ID: 7650061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cellular inhibitors on the infection of various susceptible cells with vesicular stomatitis virus.
    Superti F; Seganti L; Orsi N
    Acta Virol; 1988 Nov; 32(6):487-93. PubMed ID: 2906220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of human cell-mediated cytotoxicity. III. Dependence of natural killing on microtubule and microfilament integrity.
    Katz P; Zaytoun AM; Lee JH
    J Immunol; 1982 Dec; 129(6):2816-25. PubMed ID: 6890568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibody-dependent cytotoxicity: modulation by the cytochalasins and microtubule-disruptive agents.
    Gelfand EW; Morris SA; Resch K
    J Immunol; 1975 Mar; 114(3):919-24. PubMed ID: 1112985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cytochalasin D and colchicine on the uptake, translocation, and biliary secretion of horseradish peroxidase and [14C]sodium taurocholate in the rat.
    Kacich RL; Renston RH; Jones AL
    Gastroenterology; 1983 Aug; 85(2):385-94. PubMed ID: 6683208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural study of biochemically modulated ADCC in HSV-1 infected and uninfected Chang liver cells.
    Kournikakis B; Murasko DM; Bozzola JJ
    Microbios; 1986; 48(195):81-91. PubMed ID: 3025564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of herpes simplex virus type 1 penetration by cytochalasins B and D.
    Rosenthal KS; Perez R; Hodnichak C
    J Gen Virol; 1985 Jul; 66 ( Pt 7)():1601-5. PubMed ID: 2991432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A possible complementary role of actin microfilaments and microtubules in triacylglycerol secretion by isolated rat hepatocytes.
    Prentki M; Crettaz M; Jeanrenaud B
    Biochim Biophys Acta; 1980 Feb; 627(3):262-9. PubMed ID: 6892562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of infection of macrophages with Ehrlichia risticii by cytochalasins, monodansylcadaverine, and taxol.
    Rikihisa Y; Zhang Y; Park J
    Infect Immun; 1994 Nov; 62(11):5126-32. PubMed ID: 7927796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genetic deficiency of leukocyte surface glycoprotein Mac-1, LFA-1, p150,95 in humans is associated with defective antibody-dependent cellular cytotoxicity in vitro and defective protection against herpes simplex virus infection in vivo.
    Kohl S; Loo LS; Schmalstieg FS; Anderson DC
    J Immunol; 1986 Sep; 137(5):1688-94. PubMed ID: 3528287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human antibody-dependent cellular cytotoxicity and natural killer cytotoxicity to herpes simplex virus-infected autologous and allogeneic cells.
    Kohl S; Moore CM
    Immunology; 1983 Jan; 48(1):187-93. PubMed ID: 6848451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similarities between platelet contraction and cellular motility during mitosis: role of platelet microtubules in clot retraction.
    Chao FC; Shepro D; Tullis JL; Belamarich FA; Curby WA
    J Cell Sci; 1976 May; 20(3):569-88. PubMed ID: 1270531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of colchicine and cytochalasins on the shedding of murine B cell membrane IgM and IgD.
    Emerson SG; Cone RE
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6582-6. PubMed ID: 316543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cytochalasins B and D and colchicine on migration of the corneal epithelium.
    Gipson IK; Westcott MJ; Brooksby NG
    Invest Ophthalmol Vis Sci; 1982 May; 22(5):633-42. PubMed ID: 7200475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of macrophage C3b receptor function by cytochalasin-sensitive structures.
    Atkinson JP; Michael JM; Chaplin H; Parker CW
    J Immunol; 1977 Apr; 118(4):1292-9. PubMed ID: 557509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Herpes simplex virus glycoproteins: participation of individual herpes simplex virus type 1 glycoprotein antigens in immunocytolysis and their correlation with previously identified glycopolypeptides.
    Norrild B; Shore SL; Nahmias AJ
    J Virol; 1979 Dec; 32(3):741-8. PubMed ID: 229263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold and metabolic inhibitor effects on cytoplasmic microtubules and the Golgi complex in cultured rat epiphyseal chondrocytes.
    Moskalewski S; Thyberg J; Friberg U
    Cell Tissue Res; 1980; 210(3):403-15. PubMed ID: 7407846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.