These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 6156623)

  • 1. Overview: mechanisms of the regulation of hemoglobin synthesis at the cellular level.
    Nienhuis AW; Barker JE; Croissant RD
    Ann N Y Acad Sci; 1980; 344():189-205. PubMed ID: 6156623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular regulation of hemoglobin switching: evidence for inverse relationship between fetal hemoglobin synthesis and degree of maturity of human erythroid cells.
    Papayannopoulou T; Kalmantis T; Stamatoyannopoulos G
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6420-4. PubMed ID: 293729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemoglobin switching in sheep: a comparison of the erythropoietin-induced switch to HbC and the fetal to adult hemoglobin switch.
    Barker JE; Pierce JE; Nienhuis AW
    Blood; 1980 Sep; 56(3):488-94. PubMed ID: 6157442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular regulation of fetal hemoglobin production.
    Papayannopoulou T; Stamatoyannopoulos G
    Ann N Y Acad Sci; 1980; 344():206-18. PubMed ID: 6156624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The switching from hemoglobin F to hemoglobin A formation in man: parallels between the observations in vivo and the findings in erythroid cultures.
    Stamatoyannopoulos G; Papayannopoulou T
    Prog Clin Biol Res; 1981; 55():665-78. PubMed ID: 6170071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental biology of human hemoglobins.
    Wood WG; Clegg JB; Weatherall DJ
    Prog Hematol; 1977; 10():43-90. PubMed ID: 337366
    [No Abstract]   [Full Text] [Related]  

  • 7. Hb switching in neonatal cultures. Increase of Hb A synthesis in presence of an erythroid potentiating activity (EPA).
    Testa U; Vainchenker W; Guerrasio A; Beuzard Y; Breton-Gorius J; Rosa J; Lusis AJ; Golde D
    J Cell Physiol; 1982 Feb; 110(2):196-202. PubMed ID: 6175652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemoglobin switching in animals.
    Benz EJ
    Tex Rep Biol Med; 1980-1981; 40():111-23. PubMed ID: 6172862
    [No Abstract]   [Full Text] [Related]  

  • 9. Erythropoietic kinetics in sheep studied by means of induced changes in hemoglobin phenotype.
    Gabuzda TG; Schuman MA; Silver RK; Lewis HB
    J Clin Invest; 1968 Aug; 47(8):1895-904. PubMed ID: 5672611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of hemoglobin synthesis during the development of the red cell (third of three parts).
    Nienhuis AW; Benz EJ
    N Engl J Med; 1977 Dec; 297(26):1430-6. PubMed ID: 337141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemoglobin switching in sheep: characteristics of BFU-E-derived colonies from fetal liver.
    Barker JE
    Blood; 1980 Sep; 56(3):495-500. PubMed ID: 6157443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of the individual globin genes during erythroid differentiation.
    Benz E; Turner P; Barker J; Nienhuis A
    Science; 1977 Jun; 196(4295):1213-4. PubMed ID: 860136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of the simian fetal hemoglobin switch at the progenitor cell level.
    Alter BP; Jackson BT; Lipton JM; Piasecki GJ; Jackson PL; Kudisch M; Nathan DG
    J Clin Invest; 1981 Feb; 67(2):458-66. PubMed ID: 6161945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human hemoglobin switching: insights from studies of erythroid cultures.
    Papayannopoulou T; Stamatoyannopoulos G
    J Cell Physiol Suppl; 1982; 1():145-9. PubMed ID: 6175651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fetal hemoglobin accumulation in vitro. Effect of adherent mononuclear cells.
    Javid J; Pettis PK
    J Clin Invest; 1983 May; 71(5):1356-65. PubMed ID: 6189860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemoglobin F synthesis in vitro: evidence for control at the level of primitive erythroid stem cells.
    Papayannopoulou T; Brice M; Stamatoyannopoulos G
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2923-7. PubMed ID: 268643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased synthesis of mouse minor hemoglobin in erythroid colonies: a cellular model for hemoglobin regulation.
    Alter BP; Campbell AS
    Exp Hematol; 1984 Sep; 12(8):611-6. PubMed ID: 6489473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 14q32 and let-7 microRNAs regulate transcriptional networks in fetal and adult human erythroblasts.
    Lessard S; Beaudoin M; Orkin SH; Bauer DE; Lettre G
    Hum Mol Genet; 2018 Apr; 27(8):1411-1420. PubMed ID: 29432581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fetal hemoglobin production in cultures of primitive and mature human erythroid progenitors: differentiation affects the quantity of fetal hemoglobin produced per fetal-hemoglobin-containing cell.
    Dover GJ; Chan T; Sieber F
    Blood; 1983 Jun; 61(6):1242-6. PubMed ID: 6188507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemoglobin switching in sheep and goats: induction of hemoglobin C synthesis in cultures of sheep fetal erythroid cells.
    Barker JE; Pierce JE; Kefauver BC; Nienhuis AW
    Proc Natl Acad Sci U S A; 1977 Nov; 74(11):5078-82. PubMed ID: 270742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.