These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

637 related articles for article (PubMed ID: 6157353)

  • 21. Tricarboxylic acid cycle intermediates and the control of fatty acid synthesis and ketogenesis.
    Lane MD; Mooney RA
    Curr Top Cell Regul; 1981; 18():221-42. PubMed ID: 6168431
    [No Abstract]   [Full Text] [Related]  

  • 22. Some aspects of fatty acid oxidation and ketone body formation and utilization during development of the rat.
    Bailey E; Lockwood EA
    Enzyme; 1973; 15(1):239-53. PubMed ID: 4593961
    [No Abstract]   [Full Text] [Related]  

  • 23. Bihormonal control of ketogenesis.
    Nutr Rev; 1975 Nov; 33(11):347-9. PubMed ID: 1105258
    [No Abstract]   [Full Text] [Related]  

  • 24. Enhancement of mitochondrial carnitine and carnitine acylcarnitine translocase-mediated transport of fatty acids into liver mitochondria under ketogenic conditions.
    Parvin R; Pande SV
    J Biol Chem; 1979 Jun; 254(12):5423-9. PubMed ID: 447661
    [No Abstract]   [Full Text] [Related]  

  • 25. Lipid transport and the availability of insulin.
    Havel RJ
    Horm Metab Res; 1974; Suppl 4():51-3. PubMed ID: 4370825
    [No Abstract]   [Full Text] [Related]  

  • 26. Hepatic ketogenesis and lipolysis.
    Claycomb WC
    Ala J Med Sci; 1972 Apr; 9(2):180-96. PubMed ID: 4341519
    [No Abstract]   [Full Text] [Related]  

  • 27. Effects of insulin treatment on ketone body production and carnitine-palmitoyl-transferase (CPT) activity in the isolated perfused liver from streptozotocin diabetic rats.
    Tessari P; Meneghel A; Avogaro A; Nosadini R; Del Prato S; Tiengo A
    Horm Metab Res; 1985 Jun; 17(6):271-4. PubMed ID: 3160642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2.
    Abu-Elheiga L; Matzuk MM; Abo-Hashema KA; Wakil SJ
    Science; 2001 Mar; 291(5513):2613-6. PubMed ID: 11283375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Problems of metabolism regulation in the liver. 3. Regulation mechanisms in lipid metabolism].
    Förster E; Holldorf AW; Falk H
    Acta Hepatosplenol; 1968; 15(5):292-307. PubMed ID: 5707322
    [No Abstract]   [Full Text] [Related]  

  • 30. Interrelationship between fatty acid metabolism and hepatic gluconeogenesis.
    Söling HD
    Horm Metab Res; 1974; Suppl 4():56-62. PubMed ID: 4609066
    [No Abstract]   [Full Text] [Related]  

  • 31. Regulation of in vivo ketogenesis: role of free fatty acids and control by epinephrine, thyroid hormones, insulin and glucagon.
    Beylot M
    Diabetes Metab; 1996 Oct; 22(5):299-304. PubMed ID: 8896990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interrelationship between adipose tissue and liver: gluconeogenesis and ketogenesis.
    Weiss L; Löffler G
    Horm Metab Res; 1970; 2():Suppl 2:196-20. PubMed ID: 4949047
    [No Abstract]   [Full Text] [Related]  

  • 33. Short-term control of carbohydrate and lipid metabolism in isolated hepatocytes by insulin and glucagon.
    Beynen AC; Geelen MJ
    Endocrinol Exp; 1982 Mar; 16(1):43-68. PubMed ID: 7040068
    [No Abstract]   [Full Text] [Related]  

  • 34. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise.
    Roepstorff C; Halberg N; Hillig T; Saha AK; Ruderman NB; Wojtaszewski JF; Richter EA; Kiens B
    Am J Physiol Endocrinol Metab; 2005 Jan; 288(1):E133-42. PubMed ID: 15383373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The roles of insulin, glucagon, and free fatty acids in the regulation of ketogenesis in dogs.
    Keller U; Chiasson JL; Liljenquist JE; Cherrington AD; Jennings AS; Crofford OS
    Diabetes; 1977 Nov; 26(11):1040-51. PubMed ID: 913893
    [No Abstract]   [Full Text] [Related]  

  • 36. Altered interactions between lipogenesis and fatty acid oxidation in regenerating rat liver.
    Schofield PS; Sugden MC; Corstorphine CG; Zammit VA
    Biochem J; 1987 Jan; 241(2):469-74. PubMed ID: 3593202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. beta-Hydroxybutyrate oxidation is reduced and hepatic balance of ketone bodies and free fatty acids is unaltered in carnitine-depleted, pivalate-treated rats.
    Bianchi PB; Davis AT
    J Nutr; 1996 Nov; 126(11):2867-72. PubMed ID: 8914959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of administration of di-(2-ethylhexyl)phthalate on rat liver mitochondria.
    Shindo Y; Osumi T; Hashimoto T
    Biochem Pharmacol; 1978; 27(23):2683-8. PubMed ID: 728223
    [No Abstract]   [Full Text] [Related]  

  • 39. Effect of acetaldehyde on fatty acid oxidation and ketogenesis by hepatic mitochondria.
    Cederbaum AI; Lieber CS; Rubin E
    Arch Biochem Biophys; 1975 Jul; 169(1):29-41. PubMed ID: 1164023
    [No Abstract]   [Full Text] [Related]  

  • 40. [The fundamentals of the pharmacology of antidiabetic substances].
    Losert W
    Pharmazie; 1975 Jul; 30(7):422-33. PubMed ID: 1101277
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.