These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 6157553)

  • 41. Analysis of human tonsil and cancer DNAs and RNAs for DNA sequences of group C (serotypes 1, 2, 5, and 6) human adenoviruses.
    Green M; Wold WS; Mackey JK; Rigden P
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6606-10. PubMed ID: 293748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Primate type-C virus nucleic acid sequences (woolly monkey and baboon types) in tissues from a patient with acute myelogenous leukemia and in viruses isolated from cultured cells of the same patient.
    Reitz MS; Miller NR; Wong-Staal F; Gallagher RE; Gallo RC; Gillespie DH
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):2113-7. PubMed ID: 59361
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Malignant transformation of human embryo retinoblasts by cloned adenovirus 12 DNA.
    Byrd P; Brown KW; Gallimore PH
    Nature; 1982 Jul; 298(5869):69-71. PubMed ID: 6283371
    [No Abstract]   [Full Text] [Related]  

  • 44. Flow cytometry of fluorescent in situ hybridization to detect specific RNA and DNA sequences.
    Bauman JG; van Dekken H
    Acta Histochem Suppl; 1989; 37():65-9. PubMed ID: 2475886
    [No Abstract]   [Full Text] [Related]  

  • 45. [Transcription of the genome of adenovirus type 5 in a line of transformed cells].
    Frolova EI; Zalmanzon ES; Georgiev GP
    Dokl Akad Nauk SSSR; 1977 Dec; 237(5):1226-9. PubMed ID: 590087
    [No Abstract]   [Full Text] [Related]  

  • 46. Localization of specific DNA sequences in cell nuclei and human metaphase chromosomes by fluorescence microscopy.
    Van Prooijen-Knegt AC; Van der Ploeg M
    Cell Biol Int Rep; 1982 Jul; 6(7):653. PubMed ID: 7127474
    [No Abstract]   [Full Text] [Related]  

  • 47. Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog.
    Singer RH; Ward DC
    Proc Natl Acad Sci U S A; 1982 Dec; 79(23):7331-5. PubMed ID: 6961411
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advantages and limitations of using fluorescence in situ hybridization for the detection of aneuploidy in interphase human cells.
    Eastmond DA; Schuler M; Rupa DS
    Mutat Res; 1995 Dec; 348(4):153-62. PubMed ID: 8544867
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visualization of single RNA transcripts in situ.
    Femino AM; Fay FS; Fogarty K; Singer RH
    Science; 1998 Apr; 280(5363):585-90. PubMed ID: 9554849
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Chromogenic In Situ Hybridization (CISH) Assay for Detection of HBV RNA, DNA, and cccDNA in Liver Tissue.
    Zhang X; Lu W; Feng Y; Zhang Z; Yuan Z
    Methods Mol Biol; 2024; 2837():137-148. PubMed ID: 39044081
    [TBL] [Abstract][Full Text] [Related]  

  • 51. From feulgen to modern methods: marking a century of DNA imaging advances.
    Lakadamyali M
    Histochem Cell Biol; 2024 Jul; 162(1-2):13-22. PubMed ID: 38753186
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The intracellular visualization of exogenous DNA in fluorescence microscopy.
    Greitens C; Leroux JC; Burger M
    Drug Deliv Transl Res; 2024 Aug; 14(8):2242-2261. PubMed ID: 38526634
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The reckoning of chromosomal instability: past, present, future.
    Lynch A; Bradford S; Burkard ME
    Chromosome Res; 2024 Feb; 32(1):2. PubMed ID: 38367036
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Piscis: a novel loss estimator of the F1 score enables accurate spot detection in fluorescence microscopy images via deep learning.
    Niu Z; O'Farrell A; Li J; Reffsin S; Jain N; Dardani I; Goyal Y; Raj A
    bioRxiv; 2024 Jan; ():. PubMed ID: 38352551
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tigerfish designs oligonucleotide-based in situ hybridization probes targeting intervals of highly repetitive DNA at the scale of genomes.
    Aguilar R; Camplisson CK; Lin Q; Miga KH; Noble WS; Beliveau BJ
    Nat Commun; 2024 Feb; 15(1):1027. PubMed ID: 38310092
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mapping cancer biology in space: applications and perspectives on spatial omics for oncology.
    Lee S; Kim G; Lee J; Lee AC; Kwon S
    Mol Cancer; 2024 Jan; 23(1):26. PubMed ID: 38291400
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluorescent In Situ Hybridization for the Detection of Intracellular Bacteria in Companion Animals.
    Rolph MJ; Bolfa P; Cavanaugh SM; Rolph KE
    Vet Sci; 2024 Jan; 11(1):. PubMed ID: 38275934
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanisms of Rapid Karyotype Evolution in Mammals.
    Brannan EO; Hartley GA; O'Neill RJ
    Genes (Basel); 2023 Dec; 15(1):. PubMed ID: 38254952
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A guidebook of spatial transcriptomic technologies, data resources and analysis approaches.
    Yue L; Liu F; Hu J; Yang P; Wang Y; Dong J; Shu W; Huang X; Wang S
    Comput Struct Biotechnol J; 2023; 21():940-955. PubMed ID: 38213887
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The art of painting chromosome loops.
    Berr A; Chabouté ME
    Quant Plant Biol; 2023; 4():e11. PubMed ID: 37901685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.