These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6157957)

  • 1. Indomethacin-induced contractions of dog coronary arteries.
    Sakanashi M; Araki H; Yonemura KI
    J Cardiovasc Pharmacol; 1980; 2(5):657-65. PubMed ID: 6157957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on constrictor response of dog coronary arteries to acetylsalicylic acid.
    Sakanashi M; Araki H; Furukawa T; Rokutanda M; Yonemura K
    Arch Int Pharmacodyn Ther; 1981 Jul; 252(1):86-96. PubMed ID: 7305554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitors of prostaglandin synthesis augment beta-adrenergic responsiveness in canine coronary arteries.
    Rubanyi G; Vanhoutte PM
    Circ Res; 1985 Jan; 56(1):117-25. PubMed ID: 2981646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of 2-nicotinamidoethyl nitrate (SG-75, nicorandil) on indomethacin-induced contractions of isolated dog coronary arteries.
    Sakanashi M; Takeo S; Miyamoto Y; Aniya Y; Higuchi M
    Jpn Heart J; 1983 Mar; 24(2):289-95. PubMed ID: 6222210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional differences in the prostanoid receptors mediating prostaglandin F2 alpha-induced contractions of cat isolated arteries.
    Nakajima M; Ueda M
    Eur J Pharmacol; 1990 Dec; 191(3):359-68. PubMed ID: 2086248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification by severe hypoxia and diltiazem of dog coronary artery contractions in vitro.
    Inoue S; Kinoshita M; Toda N
    Eur J Pharmacol; 1988 Mar; 148(1):69-77. PubMed ID: 3164272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of nilvadipine on the cardiovascular system in experimental animals.
    Ohtsuka M; Koibuchi Y; Sakai S; Tsujioka K; Fujiwara T; Ozaki T; Maeda K; Motoyama I; Horiai H; Ono T
    Arzneimittelforschung; 1988 Nov; 38(11):1605-18. PubMed ID: 3214444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of hypoxia-induced contraction in human, monkey, and dog coronary arteries.
    Toda N; Matsumoto T; Yoshida K
    Am J Physiol; 1992 Mar; 262(3 Pt 2):H678-83. PubMed ID: 1558175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclo-oxygenase blockers influence the effects of 15-lipoxygenase metabolites of arachidonic acid in isolated canine blood vessels.
    Van Diest MJ; Verbeuren TJ; Herman AG
    Prostaglandins; 1986 Jul; 32(1):97-100. PubMed ID: 3094100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ouabain inhibits endothelium-dependent relaxations to arachidonic acid in canine coronary arteries.
    Rubanyi GM; Vanhoutte PM
    J Pharmacol Exp Ther; 1985 Oct; 235(1):81-6. PubMed ID: 3930700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebrovascular selectivity and vasospasmolytic action of the novel calcium antagonist (+/-)-(E)-1-(3-fluoro-6, 11-dihydrodibenz[b,e]oxepin-11-yl)-4-(3-phenyl-2-propenyl)-piperazine dimaleate in isolated cerebral arteries of the rabbit and dog.
    Minato H; Hashizume M; Masuda Y; Fujitani B; Hosoki K
    Arzneimittelforschung; 1997 Apr; 47(4):339-46. PubMed ID: 9150852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 15-lipoxygenase metabolites of arachidonic acid evoke contractions and relaxations in isolated canine arteries: role of thromboxane receptors, endothelial cells and cyclooxygenase.
    Van Diest MJ; Verbeuren TJ; Herman AG
    J Pharmacol Exp Ther; 1991 Jan; 256(1):194-203. PubMed ID: 1824864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible mechanisms involved in the coronary vasodilatory response to dopamine.
    Takenaka F; Morishita H
    Arch Int Pharmacodyn Ther; 1976 Jul; 222(1):81-93. PubMed ID: 10861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of indomethacin on contractility of isolated human umbilical artery.
    Fiscus RR; Dyer DC
    Pharmacology; 1982; 24(6):328-36. PubMed ID: 6810388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beneficial vs. detrimental actions of ethanol on heart and coronary vascular muscle: roles of Mg2+ and Ca2+.
    Altura BM; Zou LY; Altura BT; Jelicks L; Wittenberg BA; Gupta RK
    Alcohol; 1996; 13(5):499-513. PubMed ID: 8888948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in the coronary vascular resistance by indomethacin in the isolated guinea pig heart preparation in the absence of changes in mechanical performance and oxygen consumption.
    Schrör K; Krebs R; Nookhwun C
    Eur J Pharmacol; 1976 Sep; 39(1):161-9. PubMed ID: 964300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism underlying relaxations caused by prostaglandins and thromboxane A2 analog in isolated dog arteries.
    Toda N; Inoue S; Okamura T; Okunishi H
    J Cardiovasc Pharmacol; 1988 Mar; 11(3):354-62. PubMed ID: 2452930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the response to angiotensin II of isolated dog coronary and mesenteric arteries of proximal and distal portions.
    Minami Y; Toda N
    Arch Int Pharmacodyn Ther; 1988; 293():186-95. PubMed ID: 3048221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contractile actions of racemic and d-propranolol on isolated canine mesenteric and coronary arteries.
    Rajfer SI; Kohli JD; Goldberg LI
    J Pharmacol Exp Ther; 1982 Jan; 220(1):127-32. PubMed ID: 6118428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paradoxical endogenous synthesis of a coronary dilating substance from arachidonate.
    Kulkarni PS; Roberts R; Needleman P
    Prostaglandins; 1976 Sep; 12(3):337-53. PubMed ID: 968049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.