BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6159028)

  • 1. [Axonal transport from the nerve ending to the nerve cell body: a pathway for trophic signals and neurotoxins].
    Schwab ME
    Bull Schweiz Akad Med Wiss; 1980 Apr; 36(1-3):7-19. PubMed ID: 6159028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrograde axonal transport of specific macromolecules as a tool for characterizing nerve terminal membranes.
    Dumas M; Schwab ME; Thoenen H
    J Neurobiol; 1979 Mar; 10(2):179-97. PubMed ID: 512657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functions of retrograde axonal transport.
    Bisby MA
    Fed Proc; 1982 May; 41(7):2307-11. PubMed ID: 6176472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport.
    Schwab ME; Suda K; Thoenen H
    J Cell Biol; 1979 Sep; 82(3):798-810. PubMed ID: 92475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anterograde transport of neurotrophins and axodendritic transfer in the developing visual system.
    von Bartheld CS; Byers MR; Williams R; Bothwell M
    Nature; 1996 Feb; 379(6568):830-3. PubMed ID: 8587607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic targeting of retrogradely transported trophic factors in motoneurons: comparison of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and cardiotrophin-1 with tetanus toxin.
    Rind HB; Butowt R; von Bartheld CS
    J Neurosci; 2005 Jan; 25(3):539-49. PubMed ID: 15659589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axonal transport and neuronal transcytosis of trophic factors, tracers, and pathogens.
    von Bartheld CS
    J Neurobiol; 2004 Feb; 58(2):295-314. PubMed ID: 14704960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin.
    Stoeckel K; Schwab M; Thoenen H
    Brain Res; 1977 Aug; 132(2):273-85. PubMed ID: 70259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR.
    Lalli G; Schiavo G
    J Cell Biol; 2002 Jan; 156(2):233-9. PubMed ID: 11807088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons.
    Stöckel K; Schwab M; Thoenen H
    Brain Res; 1975 Nov; 99(1):1-16. PubMed ID: 52914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective trans-synaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: a comparison with nerve growth factor.
    Schwab M; Thoenen H
    Brain Res; 1977 Feb; 122(3):459-74. PubMed ID: 66083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrograde axonal and transsynaptic transport of macromolecules: physiological and pathophysiological importance.
    Schwab ME; Thoenen H
    Agents Actions; 1977 Sep; 7(3):361-8. PubMed ID: 74201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A means for targeting therapeutics to peripheral nervous system neurons with axonal damage.
    Federici T; Liu JK; Teng Q; Yang J; Boulis NM
    Neurosurgery; 2007 May; 60(5):911-8; discussion 911-8. PubMed ID: 17460527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective binding, uptake, and retrograde transport of tetanus toxin by nerve terminals in the rat iris. An electron microscope study using colloidal gold as a tracer.
    Schwab ME; Thoenen H
    J Cell Biol; 1978 Apr; 77(1):1-13. PubMed ID: 659508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leukemia inhibitory factor and nerve growth factor are retrogradely transported and processed by cultured rat sympathetic neurons.
    Ure DR; Campenot RB
    Dev Biol; 1994 Apr; 162(2):339-47. PubMed ID: 7512056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures.
    Mok SA; Lund K; Campenot RB
    Cell Res; 2009 May; 19(5):546-60. PubMed ID: 19188931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classical and novel directions in neurotrophin transport and research: anterograde transport of brain-derived neurotrophic factor by sensory neurons.
    Tonra JR
    Microsc Res Tech; 1999 May 15-Jun 1; 45(4-5):225-32. PubMed ID: 10383115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of nerve terminal events in vivo effecting retrograde transport of vesicles containing neurotrophins or synaptic vesicle components.
    Weible MW; Ozsarac N; Grimes ML; Hendry IA
    J Neurosci Res; 2004 Mar; 75(6):771-81. PubMed ID: 14994338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What is the importance of multivesicular bodies in retrograde axonal transport in vivo?
    Weible MW; Hendry IA
    J Neurobiol; 2004 Feb; 58(2):230-43. PubMed ID: 14704955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Neuronal growth factors--neurotrophins].
    Meyer M; Rasmussen JZ
    Ugeskr Laeger; 1999 Apr; 161(14):2063-70. PubMed ID: 10354791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.