BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 6159151)

  • 1. Early postnatal development of wakefulness-sleep cycle and neuronal responsiveness: a multiunit activity study on freely moving newborn rat.
    Tamásy V; Korányi L; Lissák K
    Electroencephalogr Clin Neurophysiol; 1980 Jul; 49(1-2):102-11. PubMed ID: 6159151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The developing mesencephalic reticular formation: changes in responsiveness during ontogeny of the rat.
    Tamásy V; Korányi L; Lissák K
    Acta Physiol Acad Sci Hung; 1980; 56(2):187-201. PubMed ID: 7257838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiunits in the mesencephalic reticular formation: ontogenetic development of wakefulness and sleep cycle in the rat.
    Tamásy V; Korányi L
    Neurosci Lett; 1980 Apr; 17(1-2):143-7. PubMed ID: 7052456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple unit activity study of brain stem and limbic structures during environmental habituation and circadian rhythm.
    Tamásy V; Korány L; Lissák K
    Pflugers Arch; 1975; 353(4):361-72. PubMed ID: 163465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiunit activity in the mesencephalic reticular formation and septal area of freely moving newborn rat.
    Tamásy V; Korányi L; Lissák K
    Brain Res Bull; 1979; 4(6):715-9. PubMed ID: 230885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steroid anaesthesia: alphadione depresses multiunit activity in the mesencephalic reticular formation.
    Tamásy V; Korányi L; Lissák K
    Acta Physiol Hung; 1983; 61(4):195-204. PubMed ID: 6650189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Dynamics of the neuronal activity of midbrain reticular nuclei in the sleep-wakefulness cycle].
    Oniani TN; Gvetadze LB; Mandzhavidze ShD
    Neirofiziologiia; 1984; 16(5):678-90. PubMed ID: 6514063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic properties of spontaneous unit discharges in somatosensory cortex and mesencephalic reticular formation during sleep-waking states.
    Yamamoto M; Nakahama H
    J Neurophysiol; 1983 May; 49(5):1182-98. PubMed ID: 6864245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifications of acoustic habituation by interruption of visual input in quipazine treated cats.
    Cervantes M; Guzmán-Flores C
    Bol Estud Med Biol; 1989; 37(1-2):28-35. PubMed ID: 2803471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurotoxic lesion of the mesencephalic reticular formation and/or the posterior hypothalamus does not alter waking in the cat.
    Denoyer M; Sallanon M; Buda C; Kitahama K; Jouvet M
    Brain Res; 1991 Jan; 539(2):287-303. PubMed ID: 1675907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneity in the circadian and homeostatic modulation of multiunit activity in the lateral hypothalamus.
    Schoonakker M; Meijer JH; Deboer T; Fifel K
    Sleep; 2018 Jun; 41(6):. PubMed ID: 29522210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Rhythmic slow waves and multi-unit activity during sleep-waking cycle in the rat ventral tegmentum].
    Le Moal M; Cardo B
    Electroencephalogr Clin Neurophysiol; 1975 Aug; 39(2):183-92. PubMed ID: 50215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats.
    Datta S; Siwek DF
    J Neurosci Res; 2002 Nov; 70(4):611-21. PubMed ID: 12404515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of midbrain reticular stimulation upon perigeniculate neurons activity during different states of the sleep-waking cycle in the cat.
    Fourment A; Hirsch JC; Chastanet M; Guidet C
    Brain Res; 1983 Jan; 259(2):301-7. PubMed ID: 6824942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Role of the Pedunculopontine Nucleus and Mesencephalic Reticular Formation in Locomotion in Nonhuman Primates.
    Goetz L; Piallat B; Bhattacharjee M; Mathieu H; David O; Chabardès S
    J Neurosci; 2016 May; 36(18):4917-29. PubMed ID: 27147647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single unit activity in the lateral amygdala of the cat during sleep and waking.
    White TJ; Jacobs BL
    Electroencephalogr Clin Neurophysiol; 1975 Mar; 38(3):331-3. PubMed ID: 46813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periodicities in the rate of on-demand electrical stimulation of the mesencephalic reticular formation to maintain wakefulness.
    Lucas EA; Harper RM
    Exp Neurol; 1976 May; 51(2):444-56. PubMed ID: 178520
    [No Abstract]   [Full Text] [Related]  

  • 18. Firing rates and patterns of midbrain reticular neurons during steady and transitional states of the sleep-waking cycle.
    Steriade M; Oakson G; Ropert N
    Exp Brain Res; 1982; 46(1):37-51. PubMed ID: 7067790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple units in brain stem and forebrain during the first week of life in the rat.
    Tamásy V; Korány L; Lissák K
    Exp Neurol; 1975 Jul; 48(1):29-36. PubMed ID: 1132467
    [No Abstract]   [Full Text] [Related]  

  • 20. Flurazepam and triazolam: dose-response and time-response evaluation on cat sleep.
    Novack GD; Owenburg KM
    Electroencephalogr Clin Neurophysiol; 1984 Mar; 57(3):277-88. PubMed ID: 6199189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.