BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6159600)

  • 1. Structure of transfer RNA by carbon NMR: resolution of single carbon resonances from 13C-enriched, purified species.
    Agris PF; Schmidt PG
    Nucleic Acids Res; 1980 May; 8(9):2085-91. PubMed ID: 6159600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer RNA contains sites of localized positive charge: carbon NMR studies of [13C]methyl-enriched Escherichia coli and yeast tRNAPhe.
    Agris PF; Sierzputowska-Gracz H; Smith C
    Biochemistry; 1986 Sep; 25(18):5126-31. PubMed ID: 3533144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-13 NMR studies on [4-13C] uracil labelled E. coli transfer RNA1(Val1).
    Schweizer MP; Hamill WD; Walkiw IJ; Horton WJ; Grant DM
    Nucleic Acids Res; 1980 May; 8(9):2075-83. PubMed ID: 7001371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear magnetic resonance signal assignments of purified [13C]methyl-enriched yeast phenylalanine transfer ribonucleic acid.
    Smith C; Schmidt PG; Petsch J; Agris PF
    Biochemistry; 1985 Mar; 24(6):1434-40. PubMed ID: 3886007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of an Escherichia coli mutant for carbon-13 enrichment of tRNA for NMR studies.
    Agris PF; Fujiwara FG; Schmidt CF; Loeppky RN
    Nucleic Acids Res; 1975 Sep; 2(9):1503-12. PubMed ID: 1101225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop.
    Gorenstein DG; Goldfield EM
    Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in tertiary structure accompanying a single base change in transfer RNA. Proton magnetic resonance and aminoacylation studies of Escherichia coli tRNAMet f1 and tRNAMet f3 and their spin-labeled (s4U8) derivatives.
    Daniel WE; Cohn M
    Biochemistry; 1976 Sep; 15(18):3917-24. PubMed ID: 183808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High resolution phosphorus NMR spectroscopy of transfer ribonucleic acids.
    Gorenstein DG; Goldfield EM
    Mol Cell Biochem; 1982 Jul; 46(2):97-120. PubMed ID: 6180293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal motions in yeast phenylalanine transfer RNA from 13C NMR relaxation rates of modified base methyl groups: a model-free approach.
    Schmidt PG; Sierzputowska-Gracz H; Agris PF
    Biochemistry; 1987 Dec; 26(26):8529-34. PubMed ID: 3327524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal dynamics of transfer ribonucleic acid determined by nuclear magnetic resonance of carbon-13-enriched ribose carbon 1.
    Schmidt PG; Playl T; Agris PF
    Biochemistry; 1983 Mar; 22(6):1408-15. PubMed ID: 6188489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect upon aminoacylation of bisulphite addition to 2-methylthio-N6-isopentenyl adenosine of Escherichia coli phenylalanine tRNA.
    Goddard JP; Lowdon M
    FEBS Lett; 1981 Aug; 130(2):221-2. PubMed ID: 7026289
    [No Abstract]   [Full Text] [Related]  

  • 12. Nuclear magnetic resonance studies on the tertiary folding of transfer ribonucleic acid: assignment of the 7-methylguanosine resonance.
    Hurd RE; Reid BR
    Biochemistry; 1979 Sep; 18(18):4017-24. PubMed ID: 385042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial assignment of resonances in the 19F nuclear magnetic resonance spectra of 5-fluorouracil-substituted transfer RNAs.
    Hardin CC; Gollnick P; Horowitz J
    Biochemistry; 1988 Jan; 27(1):487-95. PubMed ID: 3280022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1H NMR of valine tRNA modified bases. Evidence for multiple conformations.
    Kastrup RV; Schmidt PG
    Nucleic Acids Res; 1978 Jan; 5(1):257-69. PubMed ID: 347397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorine-19 nuclear magnetic resonance studies of the structure of 5-fluorouracil-substituted Escherichia coli transfer RNA.
    Hardin CC; Gollnick P; Kallenbach NR; Cohn M; Horowitz J
    Biochemistry; 1986 Sep; 25(19):5699-709. PubMed ID: 3535884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural dynamics of transfer ribonucleic acid: carbon-13 nuclear magnetic resonance of [13C]methyl-enriched pure species.
    Kopper RA; Schmidt PG; Agris PF
    Biochemistry; 1983 Mar; 22(6):1396-401. PubMed ID: 6188487
    [No Abstract]   [Full Text] [Related]  

  • 17. General and specific effects of amino acid starvation on the formation of undermodified Escherichia coli phenylalanine tRNA.
    Fournier MJ; Webb E; Kitchingman GR
    Biochim Biophys Acta; 1976 Nov; 454(1):97-113. PubMed ID: 791374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific 13C reductive methylation of glycophorin A. Possible relation of the N-terminal amino acid and the lysine residues to MN blood group specificities.
    Hardy RE; Batstone-Cunningham RL; Dill K
    Arch Biochem Biophys; 1983 Apr; 222(1):222-30. PubMed ID: 6404224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1H nuclear magnetic resonance of modified bases of valine transfer ribonucleic acid (Escherichia coli). A direct monitor of sequential thermal unfolding.
    Kastrup RV; Schmidt PG
    Biochemistry; 1975 Aug; 14(16):3612-8. PubMed ID: 1100098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of a tertiary interaction in solution between the extra arm and the D-stem in two different transfer RNA's by NMR.
    Salemink PJ; Yamane T; Hilbers CW
    Nucleic Acids Res; 1977 Nov; 4(11):3727-41. PubMed ID: 339202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.