These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6159600)

  • 21. Natural-abundance carbon-13 Fourier-transform nuclear magnetic resonance spectra and spin lattice relaxation times of unfractionated yeast transfer-FNA.
    Komoroski RA; Allerhand A
    Proc Natl Acad Sci U S A; 1972 Jul; 69(7):1804-8. PubMed ID: 4558659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon-13 NMR relaxation studies of pre-melt structural dynamics in [4-13C-uracil] labeled E. coli transfer RNAIVal.
    Olsen JI; Schweizer MP; Walkiw IJ; Hamill WD; Horton WJ; Grant DM
    Nucleic Acids Res; 1982 Jul; 10(14):4449-64. PubMed ID: 6750556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 31P magnetic resonance of tRNA.
    Guéron M; Shulman RG
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3482-5. PubMed ID: 242005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complete nuclear magnetic resonance signal assignments and initial structural studies of [13C]methyl-enriched yeast transfer ribonucleic acid.
    Agris PF; Kovacs SA; Smith C; Kopper RA; Schmidt PG
    Biochemistry; 1983 Mar; 22(6):1402-8. PubMed ID: 6188488
    [No Abstract]   [Full Text] [Related]  

  • 25. Production of specific site probes of tRNA structure by enrichment with carbon 13 at particular locations.
    Tompson JG; Agris PF
    Nucleic Acids Res; 1979 Oct; 7(3):765-79. PubMed ID: 388347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tertiary structures of Escherichia coli tRNA as studied by NMR spectroscopy with 13C-labeling method.
    Yokoyama S; Usuki KM; Yamaizumi Z; Nishimura S; Miyazawa T
    FEBS Lett; 1980 Sep; 119(1):77-80. PubMed ID: 6159234
    [No Abstract]   [Full Text] [Related]  

  • 27. Manganese(II) as a paramagnetic probe of the tertiary structure of transfer RNA.
    Chao YY; Kearns DR
    Biochim Biophys Acta; 1977 Jul; 477(1):20-7. PubMed ID: 328046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tertiary hydrogen bonds in the solution structure of transfer RNA.
    Reid BR; Ribeiro NS; Gould G; Robillard G; Hilbers CW; Shulman RG
    Proc Natl Acad Sci U S A; 1975 Jun; 72(6):2049-53. PubMed ID: 1094451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [tRNA-binding centers of Escherichia coli ribosomes and their structural organization].
    Karpova GG
    Mol Biol (Mosk); 1984; 18(5):1194-207. PubMed ID: 6209546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 15N and 13C labeling of Escherichia coli tRNAs toward the NMR analysis.
    Kawai G; Takayanagi M; Hayashi N; Niimi T; Sanpei G; Mizobuchi K; Miyazawa T; Tokoyama S; Watanabe K
    Nucleic Acids Symp Ser; 1992; (27):131-2. PubMed ID: 1283902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nuclear magnetic resonance studies on transfer ribonucleic acid: assignment of AU tertiary resonances.
    Hurd RE; Reid BR
    Biochemistry; 1979 Sep; 18(18):4005-11. PubMed ID: 385040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specificity of the photoreaction of 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen with ribonucleic acid. Identification of reactive sites in Escherichia coli phenylalanine-accepting transfer ribonucleic acid.
    Bachellerie JP; Hearst JE
    Biochemistry; 1982 Mar; 21(6):1357-63. PubMed ID: 6176269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzymatic methylations: III. Cadaverine-induced conformational changes of E. coli tRNA fMet as evidenced by the availability of a specific adenosine and a specific cytidine residue for methylation.
    Wildenauer D; Gross HJ; Riesner D
    Nucleic Acids Res; 1974 Sep; 1(9):1165-82. PubMed ID: 4616226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative structural analysis of 1-methyladenosine, 7-methylguanosine, ethenoadenosine and their protonated salts IV: 1H, 13C, and 15N NMR studies at natural isotope abundance.
    Sierzputowska-Gracz H; Gopal HD; Agris PF
    Nucleic Acids Res; 1986 Oct; 14(19):7783-801. PubMed ID: 3022235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The kinetics of bisulphite modification of reactive residues in E. coli tRNA2Phe.
    Lowdon M; Goddard JP
    Nucleic Acids Res; 1976 Dec; 3(12):3383-96. PubMed ID: 794838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-resolution nuclear magnetic resonance determination of transfer RNA tertiary base pairs in solution. 1. Species containing a small variable loop.
    Reid BR; Ribeiro NS; McCollum L; Abbate J; Hurd RE
    Biochemistry; 1977 May; 16(10):2086-94. PubMed ID: 324514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Presence of the hypermodified nucleotide N6-(delta 2-isopentenyl)-2-methylthioadenosine prevents codon misreading by Escherichia coli phenylalanyl-transfer RNA.
    Wilson RK; Roe BA
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):409-13. PubMed ID: 2643111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Binding of the yeast phenylalanine tRNA with Escherichia coli ribosomes. Effect of the removal of a modified base from the 3'-end of the anticodon on codon-anticodon interaction].
    Katunin VI; Kirillov SV
    Mol Biol (Mosk); 1984; 18(6):1486-96. PubMed ID: 6084167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time solvent exchange studies of the imino and amino protons of yeast phenylalanine transfer RNA by Fourier transform NMR.
    Johnston PD; Figueroa N; Redfield AG
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3130-4. PubMed ID: 386331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transfer RNA structure by carbon NMR: C2 of adenine, uracil and cytosine.
    Schmidt PG; Tompson JG; Agris PF
    Nucleic Acids Res; 1980 Feb; 8(3):643-56. PubMed ID: 7443538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.