These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6160253)

  • 1. Helix-coil dynamics in RNA: the amino acid acceptor helix of Escherichia coli phenylalanine transfer RNA.
    Hurd RE; Reid BR
    J Mol Biol; 1980 Sep; 142(2):181-93. PubMed ID: 6160253
    [No Abstract]   [Full Text] [Related]  

  • 2. Sequential degradation of nucleic acids. Degradation of Escherichia coli B phenylalanine transfer ribonucleic acid.
    Uziel M; Khym JX
    Biochemistry; 1969 Aug; 8(8):3254-60. PubMed ID: 4309204
    [No Abstract]   [Full Text] [Related]  

  • 3. Investigation of the secondary structure of Escherichia coli 5 S RNA by high-resolution nuclear magnetic resonance.
    Kearns DR; Wong YP
    J Mol Biol; 1974 Aug; 87(4):755-74. PubMed ID: 4610155
    [No Abstract]   [Full Text] [Related]  

  • 4. The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA.
    Crothers DM; Cole PE; Hilbers CW; Shulman RG
    J Mol Biol; 1974 Jul; 87(1):63-88. PubMed ID: 4610153
    [No Abstract]   [Full Text] [Related]  

  • 5. High-resolution NMR investigation of base pairing structure of transfer RNA.
    Kearns DR; Lightfoot DR; Wong KL; Wong YP; Reid BR; Cary L; Shulman RG
    Ann N Y Acad Sci; 1973 Dec; 222():324-36. PubMed ID: 4594296
    [No Abstract]   [Full Text] [Related]  

  • 6. Evaluation of base-pairing schemes for E. coli 5S RNA by 400 MHz proton nuclear magnetic resonance spectroscopy.
    Burns PD; Luoma GA; Marshall AG
    Biochem Biophys Res Commun; 1980 Sep; 96(2):805-11. PubMed ID: 6158943
    [No Abstract]   [Full Text] [Related]  

  • 7. The extent of base pairing in 5 s RNA. Yeast 5 s RNA.
    Wong YP; Kearns DR; Reid BR; Shulman RG
    J Mol Biol; 1972 Dec; 72(3):741-9. PubMed ID: 4573846
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of acceptor stem conformation in tRNAVal recognition by its cognate synthetase.
    Liu M; Chu WC; Liu JC; Horowitz J
    Nucleic Acids Res; 1997 Dec; 25(24):4883-90. PubMed ID: 9396792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of exchangeable protons and the extent of base pairings in yeast phenylalanine transfer RNA by high resolution nuclear magnetic resonance.
    Wong YP; Kearns DR; Reid BR; Shulman RG
    J Mol Biol; 1972 Dec; 72(3):725-40. PubMed ID: 4573845
    [No Abstract]   [Full Text] [Related]  

  • 10. Physical studies of denatured tRNA2Glu from Escherichia coli.
    Bina-Stein M; Crothers DM; Hilbers CW; Shulman RG
    Proc Natl Acad Sci U S A; 1976 Jul; 73(7):2216-20. PubMed ID: 781670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assignment of the low field proton nuclear magnetic resonance spectrum of yeast phenylalanine transfer RNA to specific base pairs.
    Lightfoot DR; Wong KL; Kearns DR; Reid BR; Shulman RG
    J Mol Biol; 1973 Jun; 78(1):71-89. PubMed ID: 4581296
    [No Abstract]   [Full Text] [Related]  

  • 12. Raman spectra of ten aqueous transfer RNAs and 5S RNA. Conformational comparison with yeast phenylalanine transfer RNA.
    Chen MC; Giegé R; Lord RC; Rich A
    Biochemistry; 1978 Jul; 17(15):3134-8. PubMed ID: 359039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A calorimetric study of the thermal transitions of three specific transfer ribonucleic acids.
    Brandts JF; Jackson WM; Ting TY
    Biochemistry; 1974 Aug; 13(17):3595-600. PubMed ID: 4602947
    [No Abstract]   [Full Text] [Related]  

  • 14. Spectrophotometric studies of base composition & helix-coil transition of Vibrio cholerae DNA.
    Ghosh S; Maiti M; Chatterjee SN
    Indian J Biochem Biophys; 1976 Sep; 13(3):297-302. PubMed ID: 1010578
    [No Abstract]   [Full Text] [Related]  

  • 15. Raman studies of nucleic acids. X. Conformational structures of Escherichia coli transfer RNAs in aqueous solution.
    Thomas GJ; Chen MC; Hartman KA
    Biochim Biophys Acta; 1973 Sep; 324(1):37-49. PubMed ID: 4584698
    [No Abstract]   [Full Text] [Related]  

  • 16. Conformational changes of transfer ribonucleic acid. Relaxation kinetics of the early melting transition of methionine transfer ribonucleic acid (Escherichia coli).
    Cole PE; Crothers DM
    Biochemistry; 1972 Nov; 11(23):4368-74. PubMed ID: 4562591
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of tertiary base pair resonances in the nuclear magnetic resonance spectra of transfer ribonucleic acid.
    Reid BR; McCollum L; Ribeiro NS; Abbate J; Hurd RE
    Biochemistry; 1979 Sep; 18(18):3996-4005. PubMed ID: 385039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent and specificity. Binding and isoleucylation of phenylalanine transfer ribonucleic acid (Escherichia coli) by isoleucyl transfer ribonucleic acid synthetase from Escherichia coli.
    Yarus M
    Biochemistry; 1972 Jun; 11(12):2352-61. PubMed ID: 4337616
    [No Abstract]   [Full Text] [Related]  

  • 19. Nuclear magnetic resonance studies of codon-anticodon interaction in tRNAPhe. I. Effect of binding complementary tetra and pentanucleotides to the anticodon.
    Geerdes HA; Van Boom JH; Hilbers CW
    J Mol Biol; 1980 Sep; 142(2):195-217. PubMed ID: 6160254
    [No Abstract]   [Full Text] [Related]  

  • 20. Investigation of the base-pairing structure of the anticodon hairpin from E. coli initiator tRNA by high-resolution nmr.
    Wong KL; Kearns DR
    Biopolymers; 1974; 13(2):371-80. PubMed ID: 4594852
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.