These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6160361)

  • 1. Unidirectional fluxes in saturated single-file pores of biological and artificial membranes. II. Asymptotic behavior at high degrees of saturation.
    Kohler HH; Heckmann K
    J Theor Biol; 1980 Aug; 85(4):575-95. PubMed ID: 6160361
    [No Abstract]   [Full Text] [Related]  

  • 2. Unidirectional fluxes in saturated single-file pores of biological and artificial membranes. I. Pores containing no more than one vacancy.
    Kohler HH; Heckmann K
    J Theor Biol; 1979 Aug; 79(3):381-401. PubMed ID: 522501
    [No Abstract]   [Full Text] [Related]  

  • 3. Water permeability of gramicidin A-treated lipid bilayer membranes.
    Rosenberg PA; Finkelstein A
    J Gen Physiol; 1978 Sep; 72(3):341-50. PubMed ID: 81265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical characteristics of ion transport in lipid bilayer membranes.
    Szabo G
    Ann N Y Acad Sci; 1977 Dec; 303():266-80. PubMed ID: 290295
    [No Abstract]   [Full Text] [Related]  

  • 5. Voltage-induced thickness changes of lipid bilayer membranes and the effect of an electrin field on gramicidin A channel formation.
    Bamberg E; Benz R
    Biochim Biophys Acta; 1976 Mar; 426(3):570-80. PubMed ID: 57801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes.
    Rosenberg PA; Finkelstein A
    J Gen Physiol; 1978 Sep; 72(3):327-40. PubMed ID: 81264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesterol-dependent gramicidin A channel inactivation in red blood cell membranes and lipid bilayer membranes.
    Schagina LV; Blaskó K; Grinfeldt AE; Korchev YE; Lev AA
    Biochim Biophys Acta; 1989 Jan; 978(1):145-50. PubMed ID: 2464373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single channel conductance at lipid bilayer membranes in presence of monazomycin.
    Bamberg E; Janko K
    Biochim Biophys Acta; 1976 Mar; 426(3):447-50. PubMed ID: 57800
    [No Abstract]   [Full Text] [Related]  

  • 9. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study of interaction between cation fluxes in gramicidin A-modified bilayer phospholipid membranes. Determination of the number of ion-binding sites and their position in the gramicidin channel].
    Shchagina LV; Grinfel'dt AE; Lev AA
    Biofizika; 1980; 25(4):648-53. PubMed ID: 6158347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion movements in gramicidin pores. An example of single-file transport.
    Urban BW; Hladky SB; Haydon DA
    Biochim Biophys Acta; 1980 Nov; 602(2):331-54. PubMed ID: 6159005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Ion Transport through a Single Channel of Gramicidin A in Bilayer Lipid Membranes.
    Kubota S; Shirai O; Kitazumi Y; Kano K
    Anal Sci; 2016; 32(2):189-92. PubMed ID: 26860564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association.
    O'Connell AM; Koeppe RE; Andersen OS
    Science; 1990 Nov; 250(4985):1256-9. PubMed ID: 1700867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of transient pores in stretched vesicles.
    Sandre O; Moreaux L; Brochard-Wyart F
    Proc Natl Acad Sci U S A; 1999 Sep; 96(19):10591-6. PubMed ID: 10485870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-file diffusion of uncharged particles.
    Aityan SK
    Gen Physiol Biophys; 1985 Feb; 4(1):3-14. PubMed ID: 2411622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics.
    Rokitskaya TI; Antonenko YN; Kotova EA
    Biophys J; 1997 Aug; 73(2):850-4. PubMed ID: 9251801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanopore-spanning lipid bilayers on silicon nitride membranes that seal and selectively transport ions.
    Korman CE; Megens M; Ajo-Franklin CM; Horsley DA
    Langmuir; 2013 Apr; 29(14):4421-5. PubMed ID: 23528109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous membranes for reconstitution of ion channels.
    Dhoke MA; Ladha PJ; Boerio FJ; Lessard LB; Malinowska DH; Cuppoletti J; Wieczorek DS
    Biochim Biophys Acta; 2005 Oct; 1716(2):117-25. PubMed ID: 16214106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permeation of bacterial cells, permeation of cytoplasmic and artificial membrane vesicles, and channel formation on lipid bilayers by peptide antibiotic AS-48.
    Gálvez A; Maqueda M; Martínez-Bueno M; Valdivia E
    J Bacteriol; 1991 Jan; 173(2):886-92. PubMed ID: 1702784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloride transport by self-exchange and by KCl salt diffusion in gramicidin-treated red blood cells.
    Cass A; Dalmark M
    Acta Physiol Scand; 1979 Nov; 107(3):193-203. PubMed ID: 94237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.