These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6161642)

  • 1. Carbon-13 nuclear magnetic resonance studies of the selectively isotope-labeled reactive site peptide bond of the basic pancreatic trypsin inhibitor in the complexes with trypsin, trypsinogen, and anhydrotrypsin.
    Richarz R; Tschesche H; Wüthrich K
    Biochemistry; 1980 Dec; 19(25):5711-5. PubMed ID: 6161642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen exchange kinetics of bovine pancreatic trypsin inhibitor beta-sheet protons in trypsin-bovine pancreatic trypsin inhibitor, trypsinogen-bovine pancreatic trypsin inhibitor, and trypsinogen-isoleucylvaline-bovine pancreatic trypsin inhibitor.
    Brandt P; Woodward C
    Biochemistry; 1987 Jun; 26(11):3156-67. PubMed ID: 2440473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-level bacterial expression and 15N-alanine-labeling of bovine trypsin. Application to the study of trypsin-inhibitor complexes and trypsinogen activation by NMR spectroscopy.
    Peterson FC; Gordon NC; Gettins PG
    Biochemistry; 2001 May; 40(21):6275-83. PubMed ID: 11371189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The refined 2.2-A (0.22-nm) X-ray crystal structure of the ternary complex formed by bovine trypsinogen, valine-valine and the Arg15 analogue of bovine pancreatic trypsin inhibitor.
    Bode W; Walter J; Huber R; Wenzel HR; Tschesche H
    Eur J Biochem; 1984 Oct; 144(1):185-90. PubMed ID: 6207021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization by nuclear magnetic resonance of a reactive-site 13carbon-labelled basic pancreatic trypsin inhibitor with the peptide bond Arg-39--Ala-40 cleaved and Arg-39 removed.
    Richarz R; Tschesche H; Wüthrich K
    Eur J Biochem; 1979 Dec; 102(2):563-71. PubMed ID: 527593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of anionic and cationic trypsinogens: the anionic activation domain is more flexible in solution and differs in its mode of BPTI binding in the crystal structure.
    Pasternak A; Ringe D; Hedstrom L
    Protein Sci; 1999 Jan; 8(1):253-8. PubMed ID: 10210204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activating a zymogen without proteolytic processing: mutation of Lys15 and Asn194 activates trypsinogen.
    Pasternak A; Liu X; Lin TY; Hedstrom L
    Biochemistry; 1998 Nov; 37(46):16201-10. PubMed ID: 9819212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of the Ile-Val and Val-Val effector dipeptides to the binary adducts of bovine trypsinogen with Kunitz and Kazal inhibitors as well as the acylating agent p-nitrophenyl p-guanidinobenzoate. A thermodynamic and kinetic study.
    Ascenzi P; Amiconi G; Bolognesi M; Menegatti E; Guarneri M
    J Mol Biol; 1987 Apr; 194(4):751-4. PubMed ID: 2443709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Denaturation of free and complexed bovine trypsinogen with the calcium ion, dipeptide Ile-Val and basic pancreatic trypsin inhibitor (Kunitz).
    Bulaj G; Otlewski J
    Eur J Biochem; 1994 Aug; 223(3):939-46. PubMed ID: 7519988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of Alzheimer's amyloid beta-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): engineering of inhibitors with altered specificities.
    Scheidig AJ; Hynes TR; Pelletier LA; Wells JA; Kossiakoff AA
    Protein Sci; 1997 Sep; 6(9):1806-24. PubMed ID: 9300481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen bonding monitored by deuterium isotope effects on carbonyl 13C chemical shift in BPTI: intra-residue hydrogen bonds in antiparallel beta-sheet.
    Tüchsen E; Hansen PE
    Int J Biol Macromol; 1991 Feb; 13(1):2-8. PubMed ID: 1711894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disulfide bond isomerization in basic pancreatic trypsin inhibitor: multisite chemical exchange quantified by CPMG relaxation dispersion and chemical shift modeling.
    Grey MJ; Wang C; Palmer AG
    J Am Chem Soc; 2003 Nov; 125(47):14324-35. PubMed ID: 14624581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitutions at the P(1) position in BPTI strongly affect the association energy with serine proteinases.
    Grzesiak A; Helland R; Smalås AO; Krowarsch D; Dadlez M; Otlewski J
    J Mol Biol; 2000 Aug; 301(1):205-17. PubMed ID: 10926503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (13)C-NMR studies on disulfide bond isomerization in bovine pancreatic trypsin inhibitor (BPTI).
    Takeda M; Miyanoiri Y; Terauchi T; Kainosho M
    J Biomol NMR; 2016 Sep; 66(1):37-53. PubMed ID: 27566173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between squash inhibitors and bovine trypsinogen.
    Zbyryt T; Otlewski J
    Biol Chem Hoppe Seyler; 1991 Apr; 372(4):255-62. PubMed ID: 2059335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of a pancreatic trypsin inhibitor homologue and a model inhibitor.
    Tan NH; Kaiser ET
    Biochemistry; 1977 Apr; 16(8):1531-41. PubMed ID: 300629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zymogen activation: effect of peptides sequentially related to the bovine beta-trypsin N-terminus on Kazal inhibitor and benzamidine binding to bovine trypsinogen.
    Ascenzi P; Coletta M; Amiconi G; Bolognesi M; Guarneri M; Menegatti E
    J Mol Recognit; 1988 Jun; 1(3):130-7. PubMed ID: 3273224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of single-disulfide variants of bovine pancreatic trypsin inhibitor (BPTI) as probed by their binding to bovine beta-trypsin.
    Krokoszynska I; Dadlez M; Otlewski J
    J Mol Biol; 1998 Jan; 275(3):503-13. PubMed ID: 9466927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonyl 13C NMR spectrum of basic pancreatic trypsin inhibitor: resonance assignments by selective amide hydrogen isotope labeling and detection of isotope effects on 13C nuclear shielding.
    Tüchsen E; Hansen PE
    Biochemistry; 1988 Nov; 27(23):8568-76. PubMed ID: 2464371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assignment of the natural abundance 13C spectrum of proteins using 13C 1H-detected heteronuclear multiple-bond correlation NMR spectroscopy: structural information and stereospecific assignments from two- and three-bond carbon-hydrogen coupling constants.
    Hansen PE
    Biochemistry; 1991 Oct; 30(43):10457-66. PubMed ID: 1718420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.