These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6162326)

  • 41. Effect of monochromatic UVA light and 8-methoxypsoralen on human lymphocyte response to mitogen.
    Gasparro FP; Berger CL; Edelson RL
    Photodermatol; 1984 Feb; 1(1):10-7. PubMed ID: 6531277
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Molecular epidemiologic surveillance and antifungal agent sensitivity of Candida albicans isolated from anesthesia intensive care units].
    Gülay Z; Ergon C; Ozkütük A; Yücesoy M; Biçmen M
    Mikrobiyol Bul; 2002; 36(3-4):309-16. PubMed ID: 12838665
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Screening of Candida albicans fluconazole--resistant mutation strains].
    Wang W; Zhang B; Wang X; Liu Y; Wang D
    Wei Sheng Wu Xue Bao; 1997 Jun; 37(3):212-6. PubMed ID: 9863212
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro activity of Phytolacca dodecandra (Endod) against dermatophytes.
    Woldeamanuel Y; Abate G; Chryssanthou E
    Ethiop Med J; 2005 Jan; 43(1):31-4. PubMed ID: 16370528
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inefficacy of topical methoxalen plus UVA for palmoplantar pustulosis.
    Jansén CT; Malmiharju T
    Acta Derm Venereol; 1981; 61(4):354-6. PubMed ID: 6173996
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Action spectra and chromophores for lethal photosensitization of Candida albicans by DNA monoadducts formed by 8-methoxypsoralen and monofunctional furocoumarins.
    Baydoun SA; Gibbs NK; Young AR
    Photochem Photobiol; 1989 Dec; 50(6):753-61. PubMed ID: 2696990
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of 8-methoxypsoralen-plus ultraviolet light on cell-virus interaction: the transforming infection; effect of PUVA on the transformation of baby hamster kidney cells by polyoma virus.
    Morhenn VB; Kaye JA
    J Invest Dermatol; 1979 Mar; 72(3):138-42. PubMed ID: 217937
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dose-effects of 8-methoxypsoralen and UVA in cultured human lymphocytes.
    Krüger J; Christophers E; Schlaak M
    Br J Dermatol; 1978 Feb; 98(2):141-4. PubMed ID: 629869
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparison of systemic photochemotherapy with 8-methoxypsoralen (8-MOP) and with trimethylpsoralen (TMP) in vitiligo.
    Mhaske VP; Phadke VA; Joshi R; Khopkar US; Wadhwa SL
    Indian J Dermatol Venereol Leprol; 1998; 64(4):176-9. PubMed ID: 20921756
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutagenicity of 8-methoxypsoralen and long-wave ultraviolet irradiation in diploid human skin fibroblasts: an improved risk estimate in photochemotherapy.
    Burger PM; Simons JW
    Mutat Res; 1979 Dec; 63(2):371-80. PubMed ID: 522877
    [TBL] [Abstract][Full Text] [Related]  

  • 51. UVB/PUVA-induced suppression of human natural killer activity is reduced by superoxide dismutase and/or interleukin 2 in vitro.
    Toda K; Miyachi Y; Nesumi N; Konishi J; Imamura S
    J Invest Dermatol; 1986 May; 86(5):519-22. PubMed ID: 3489052
    [TBL] [Abstract][Full Text] [Related]  

  • 52. UV susceptibility and negative phototropism of dermatophytes.
    Brasch J; Menz A
    Mycoses; 1995; 38(5-6):197-203. PubMed ID: 8531931
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative studies on the photosensitizing potency of 5-methoxypsoralen and 8-methoxypsoralen as measured by cytolysis in Paramecium caudatum and Tetrahymena pyriformis, and growth inhibition and survival in Candida albicans.
    Young AR; Barth J
    Photochem Photobiol; 1982 Jan; 35(1):83-8. PubMed ID: 6804993
    [No Abstract]   [Full Text] [Related]  

  • 54. An adaptation of the Candida albicans phototoxicity test to demonstrate photosensitizer action spectra.
    Gibbs NK
    Photodermatol; 1987 Dec; 4(6):312-6. PubMed ID: 3328174
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro PUVA radiation abolishes fluorescent staining with epidermal cell and basement membrane zone markers.
    Danno K; Horio T
    Br J Dermatol; 1985 Oct; 113(4):391-6. PubMed ID: 2415148
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of carbon dioxide as a dermatophyte inhibitory factor produced by Candida albicans.
    King RD; Dillavou CL; Greenberg JH; Jeppsen JC; Jaegar JS
    Can J Microbiol; 1976 Dec; 22(12):1720-7. PubMed ID: 795532
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of the ArF excimer laser on Candida albicans in vitro.
    Frucht-Pery J; Mor M; Evron R; Lewis A; Zauberman H
    Graefes Arch Clin Exp Ophthalmol; 1993 Jul; 231(7):413-5. PubMed ID: 8406067
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Squalene peroxide formation by UVA irradiation with or without 8-MOP (author's transl)].
    Yoshino K; Matsuo I
    Nihon Hifuka Gakkai Zasshi; 1981 Jan; 91(1):53-7. PubMed ID: 6971356
    [No Abstract]   [Full Text] [Related]  

  • 59. [The effect of ultraviolet radiation on the germination and growth of dermatophytes].
    Buchnícek J
    Cesk Dermatol; 1967 Feb; 42(1):27-9. PubMed ID: 6040734
    [No Abstract]   [Full Text] [Related]  

  • 60. Candida utilis as a convenient and safe substitute for the pathogenic yeast C. albicans in Daniels' phototoxicity test.
    Kagan J; Gabriel R
    Experientia; 1980 May; 36(5):587-8. PubMed ID: 6991274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.