BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 6162423)

  • 21. Morphogenetic movements during the early development of the chick eye. An ultrastructural and spatial reconstructive study. A. Invagination of the lens placode.
    Schook P
    Acta Morphol Neerl Scand; 1980 Jun; 18(23):133-57. PubMed ID: 7405633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. alpha6 Integrin is regulated with lens cell differentiation by linkage to the cytoskeleton and isoform switching.
    Walker JL; Menko AS
    Dev Biol; 1999 Jun; 210(2):497-511. PubMed ID: 10357906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular profiling: gene expression reveals discrete phases of lens induction and development in Xenopus laevis.
    Walter BE; Tian Y; Garlisch AK; Carinato ME; Elkins MB; Wolfe AD; Schaefer JJ; Perry KJ; Henry JJ
    Mol Vis; 2004 Mar; 10():186-98. PubMed ID: 15064684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pRb and p107 regulate E2F activity during lens fiber cell differentiation.
    Rampalli AM; Gao CY; Chauthaiwale VM; Zelenka PS
    Oncogene; 1998 Jan; 16(3):399-408. PubMed ID: 9467965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in three types of ubiquitin mRNA and ubiquitin-protein conjugate levels during lens development.
    Yang S; Wang-Su ST; Cai H; Wagner BJ
    Exp Eye Res; 2002 May; 74(5):595-604. PubMed ID: 12076081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The matured eye of Xenopus laevis tadpoles produces factors that elicit a lens-forming response in embryonic ectoderm.
    Henry JJ; Mittleman JM
    Dev Biol; 1995 Sep; 171(1):39-50. PubMed ID: 7556906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Timing of SV40 oncogene activation by site-specific recombination determines subsequent tumor progression during murine lens development.
    Pichel JG; Lakso M; Westphal H
    Oncogene; 1993 Dec; 8(12):3333-42. PubMed ID: 8247535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mechanisms of cell death and phagocytosis in the early chick lens morphogenesis: a scanning electron microscopy and cytochemical approach.
    García-Porrero JA; Colvée E; Ojeda JL
    Anat Rec; 1984 Jan; 208(1):123-36. PubMed ID: 6711833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell proliferation during the early stages of human eye development.
    Bozanić D; Saraga-Babić M
    Anat Embryol (Berl); 2004 Aug; 208(5):381-8. PubMed ID: 15252731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Immunohistochemical identification of specific antigens in stained and balsam-embedded eye lens sections].
    Mikhaĭlov AT; Gorgoliuk NA
    Biull Eksp Biol Med; 1979 Sep; 88(9):367-9. PubMed ID: 93003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunocytochemical localization of cyclooxygenase in the rat lens.
    Zheng DR; Fu SC; Lysz TW; Leung CC
    Invest Ophthalmol Vis Sci; 1992 Jan; 33(1):178-83. PubMed ID: 1730539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth pressure can drive early chick lens geometries.
    Hendrix R; Madras N; Johnson R
    Dev Dyn; 1993 Mar; 196(3):153-64. PubMed ID: 8400401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphogenetic movements during the early development of the chick eye. An ultrastructural and spatial study. C. Obliteration of the lens stalk lumen and separation of the lens vesicle from the surface ectoderm.
    Schook P
    Acta Morphol Neerl Scand; 1980 Aug; 18(3):195-201. PubMed ID: 7191196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Porcine eye lens crystallins: antigenic similarity with human crystallins and tool for the detection of anti-crystallin antibodies.
    Trifonova N; Kalaydjiev S; Stamenova M; Trifonova R; Breipohl W
    Graefes Arch Clin Exp Ophthalmol; 2002 Sep; 240(9):777-81. PubMed ID: 12271377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Detection of crystalline lens antigens at early stages in the development of frogs (R. temporaria)].
    Kirzon SS; Averkina RF; Viazov OE
    Biull Eksp Biol Med; 1969 May; 67(5):46-50. PubMed ID: 4985346
    [No Abstract]   [Full Text] [Related]  

  • 36. Lens-specific antigens and cytodifferentiation in the developing lens.
    Zwaan J
    J Cell Physiol; 1968 Oct; 72(2):Suppl 1:47-71. PubMed ID: 4879170
    [No Abstract]   [Full Text] [Related]  

  • 37. Antibodies to the lens and cornea in anti-DFS70-positive subjects.
    Bizzaro N; Tonutti E; Visentini D; Alessio MG; Platzgummer S; Morozzi G; Antico A; Villalta D; Piller-Roner S; Vigevani E
    Ann N Y Acad Sci; 2007 Jun; 1107():174-83. PubMed ID: 17804545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lens tropomodulin: developmental expression during differentiation.
    Sussman MA; McAvoy JW; Rudisill M; Swanson B; Lyons GE; Kedes L; Blanks J
    Exp Eye Res; 1996 Aug; 63(2):223-32. PubMed ID: 8983980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Formation of organ specific crystalline lens antigens during ontogenesis in mice].
    Barabanov VM
    Biull Eksp Biol Med; 1966 Jul; 62(7):82-5. PubMed ID: 4988483
    [No Abstract]   [Full Text] [Related]  

  • 40. Influence of hormones and growth factors on lens protein composition: the effect of dexamethasone and PDGF-AA.
    Vinader LM; van Genesen ST; de Jong WW; Lubsen NH
    Mol Vis; 2003 Dec; 9():723-9. PubMed ID: 14685140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.