These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 6162526)

  • 21. The inhibition by xanthine phosphodiesterase inhibitors of the induction of alkaline phosphatase activity in HeLa cells: relationship of enzyme activity to cyclic AMP concentrations.
    Wharton W; Goz B
    J Cell Physiol; 1979 Sep; 100(3):509-18. PubMed ID: 90681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Release of purines, noradrenaline, and GABA from rat hippocampal slices by field stimulation.
    Jonzon B; Fredholm BB
    J Neurochem; 1985 Jan; 44(1):217-24. PubMed ID: 3964829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Caffeine inhibits forskolin-stimulated cyclic AMP accumulation in rat brain.
    Mante S; Minneman KP
    Eur J Pharmacol; 1990 Jan; 175(2):203-5. PubMed ID: 1690138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antagonism of morphine action on brain acetylcholine release by methylxanthines and calcium.
    Jhamandas K; Sawynok J; Sutak M
    Eur J Pharmacol; 1978 Jun; 49(3):309-12. PubMed ID: 658146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Caffeine and related compounds block inhibitory amino acid-gated Cl- currents in freshly dissociated rat hippocampal neurones.
    Uneyama H; Harata N; Akaike N
    Br J Pharmacol; 1993 Jun; 109(2):459-65. PubMed ID: 7689394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methylxanthines block antigen-induced responses in RBL-2H3 cells independently of adenosine receptors or cyclic AMP: evidence for inhibition of antigen binding to IgE.
    Ali H; Müller CE; Daly JW; Beaven MA
    J Pharmacol Exp Ther; 1991 Sep; 258(3):954-62. PubMed ID: 1716313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of phospholipid vesicles (liposomes) on cAMP levels in the rat cerebral cortex.
    Mármol F; Gonzalez P; Maierhofer G; Gimenez J; Forn J
    Methods Find Exp Clin Pharmacol; 2003 Jun; 25(5):349-53. PubMed ID: 12851656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased levels of 3',5'-cyclic adenosine monophosphate induced by cobaltous ion or 3-isobutylmethylxanthine in the incubated mouse retina: evidence concerning location and response to ions and light.
    Cohen AI
    J Neurochem; 1982 Mar; 38(3):781-96. PubMed ID: 6173465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions between catecholamines, methyl xanthines and adenosine in regulation of cyclic AMP accumulation in hamster adipocytes.
    Schimmel RJ
    Biochim Biophys Acta; 1980 Apr; 629(1):83-94. PubMed ID: 6154485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differences in the adenosine receptors modulating inositol phosphates and cyclic AMP accumulation in mammalian cerebral cortex.
    Alexander SP; Kendall DA; Hill SJ
    Br J Pharmacol; 1989 Dec; 98(4):1241-8. PubMed ID: 2482102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Character and meaning of quasi-morphine withdrawal phenomena elicited by methylxanthines.
    Collier HO; Cuthbert NJ; Francis DL
    Fed Proc; 1981 Apr; 40(5):1513-8. PubMed ID: 6163662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a specific adenosine receptor on human lymphocytes.
    Marone G; Plaut M; Lichtenstein LM
    J Immunol; 1978 Dec; 121(6):2153-9. PubMed ID: 214496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of the behavioral effects of chlordiazepoxide by methylxanthines and analogs of adenosine in squirrel monkeys.
    Coffin VL; Spealman RD
    J Pharmacol Exp Ther; 1985 Dec; 235(3):724-8. PubMed ID: 2416907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The stimulatory effects of caffeine, theophylline, lysine-theophylline and 3-isobutyl-1-methylxanthine on human sperm motility.
    Jiang CS; Kilfeather SA; Pearson RM; Turner P
    Br J Clin Pharmacol; 1984 Aug; 18(2):258-62. PubMed ID: 6207849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of different xanthines and phosphodiesterase inhibitors on c-fos expression in rat striatum.
    Svenningsson P; Johansson B; Fredholm BB
    Acta Physiol Scand; 1995 May; 154(1):17-24. PubMed ID: 7572198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A1 adenosine receptor inhibition of cyclic AMP formation and radioligand binding in the guinea-pig cerebral cortex.
    Alexander SP; Curtis AR; Kendall DA; Hill SJ
    Br J Pharmacol; 1994 Dec; 113(4):1501-7. PubMed ID: 7889308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purine antagonists in the identification of adenosine-receptors in guinea-pig trachea and the role of purines in non-adrenergic inhibitory neurotransmission.
    Coleman RA
    Br J Pharmacol; 1980 Jul; 69(3):359-66. PubMed ID: 6249433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of methylxanthines and local anesthetics on fragmented sarcoplasmic reticulum.
    Johnson PN; Inesi G
    J Pharmacol Exp Ther; 1969 Oct; 169(2):308-14. PubMed ID: 4241926
    [No Abstract]   [Full Text] [Related]  

  • 39. Enhancement and suppression of currents related to calcium-overload by different concentrations of methylxanthines.
    Hasegawa J; Vassalle M
    Arch Int Pharmacodyn Ther; 1986 Jul; 282(1):68-81. PubMed ID: 2429627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects.
    Nehlig A; Daval JL; Debry G
    Brain Res Brain Res Rev; 1992; 17(2):139-70. PubMed ID: 1356551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.