These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 616301)
1. Cleavage of damaged DNA by an enzymatic activity from human fibroblasts. Zupi G; Elli R; Cianciulli A; Nicoletti B; Caputo A Biochem Exp Biol; 1977; 13(2):207-13. PubMed ID: 616301 [TBL] [Abstract][Full Text] [Related]
2. Xeroderma pigmentosum complementation group A protein acts as a processivity factor. Lambert MW; Yang L Biochem Biophys Res Commun; 2000 May; 271(3):782-7. PubMed ID: 10814539 [TBL] [Abstract][Full Text] [Related]
3. Defective postreplication repair in xeroderma pigmentosum variant fibroblasts. Boyer JC; Kaufmann WK; Brylawski BP; Cordeiro-Stone M Cancer Res; 1990 May; 50(9):2593-8. PubMed ID: 2109654 [TBL] [Abstract][Full Text] [Related]
4. DNA chain elongation and joining in normal human and xeroderma pigmentosum cells after ultraviolet irradiation. Buhl SN; Stillman RM; Setlow RB; Regan JD Biophys J; 1972 Sep; 12(9):1183-91. PubMed ID: 5056962 [TBL] [Abstract][Full Text] [Related]
5. [Endonuclease deficiency in xeroderma pigmentosum]. Feinstein A Harefuah; 1973 May; 84(9):488-90. PubMed ID: 4719222 [No Abstract] [Full Text] [Related]
6. Proximity of repair patches to persistent pyrimidine dimers in DNA of normal human and xeroderma pigmentosum cells. Cleaver JE Radiat Res; 1988 Nov; 116(2):245-53. PubMed ID: 3186935 [TBL] [Abstract][Full Text] [Related]
7. Specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells in vivo. Tanaka K; Hayakawa H; Sekiguchi M; Okada Y Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2958-62. PubMed ID: 197527 [TBL] [Abstract][Full Text] [Related]
8. Effects of microinjected photoreactivating enzyme on thymine dimer removal and DNA repair synthesis in normal human and xeroderma pigmentosum fibroblasts. Roza L; Vermeulen W; Bergen Henegouwen JB; Eker AP; Jaspers NG; Lohman PH; Hoeijmakers JH Cancer Res; 1990 Mar; 50(6):1905-10. PubMed ID: 2306742 [TBL] [Abstract][Full Text] [Related]
9. Double-strand breaks in DNA caused by repair of damage due to ultraviolet light. Bradley MO J Supramol Struct Cell Biochem; 1981; 16(4):337-43. PubMed ID: 6273595 [TBL] [Abstract][Full Text] [Related]
10. Detection of DNA single-strand breaks during the repair of UV damage in xeroderma pigmentosum cells. Fornace AJ; Seres DS Radiat Res; 1983 Jan; 93(1):107-11. PubMed ID: 6823503 [TBL] [Abstract][Full Text] [Related]
11. Sedimentation of DNA from human fibroblasts irradiated with ultraviolet light: possible detection of excision breaks in normal and repair-deficient xeroderma pigmentosum cells. Cleaver JE Radiat Res; 1974 Feb; 57(2):207-27. PubMed ID: 10874937 [No Abstract] [Full Text] [Related]
12. The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. Moser J; Volker M; Kool H; Alekseev S; Vrieling H; Yasui A; van Zeeland AA; Mullenders LH DNA Repair (Amst); 2005 May; 4(5):571-82. PubMed ID: 15811629 [TBL] [Abstract][Full Text] [Related]
13. [Restoration of ultraviolet-induced unsceduled DNA synthesis of xeroderma pigmentosum cells by insertion of T4 endonuclease V utilizing HVJ (AUTHOR'S TRANSL)]. Tanaka K; Okada Y; Sekiguchi M Tanpakushitsu Kakusan Koso; 1976; 21(7):525-35. PubMed ID: 184492 [No Abstract] [Full Text] [Related]
14. Biological significance of domain-oriented DNA repair in xeroderma pigmentosum cells. Kantor GJ; Elking CF Cancer Res; 1988 Feb; 48(4):844-9. PubMed ID: 3338081 [TBL] [Abstract][Full Text] [Related]
15. A lack of radiation-induced ornithine decarboxylase activity prevents enhanced reactivation of herpes simplex virus and is linked to non-cancer proneness in xeroderma pigmentosum patients. Terleth C; van Laar T; Schouten R; van Steeg H; Hodemaekers H; Wormhoudt T; Cornelissen-Steijger PD; Abrahams PJ; van der Eb AJ Cancer Res; 1997 Oct; 57(19):4384-92. PubMed ID: 9331102 [TBL] [Abstract][Full Text] [Related]
16. Roles of poly(ADP-ribose) synthesis in repair and replication in normal human, Cockayne syndrome, and xeroderma pigmentosum fibroblasts after UV irradiation. Fujiwara Y; Goto K; Yamamoto K; Ichihashi M Princess Takamatsu Symp; 1983; 13():209-18. PubMed ID: 6418714 [TBL] [Abstract][Full Text] [Related]
17. Phage T4 endonuclease V stimulates DNA repair replication in isolated nuclei from ultraviolet-irradiated human cells, including xeroderma pigmentosum fibroblasts. Smith CA; Hanawalt PC Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2598-602. PubMed ID: 275829 [TBL] [Abstract][Full Text] [Related]
18. Endonucleases for UV-irradiated and depurinated DNA in barley chloroplasts. Velemínský J; Svachulová J; Satava J Nucleic Acids Res; 1980 Mar; 8(6):1373-81. PubMed ID: 6253934 [TBL] [Abstract][Full Text] [Related]
19. Transient expression of a plasmid gene, a tool to study DNA repair in human cells: defect of DNA repair in Cockayne syndrome; one thymine cyclobutane dimer is sufficient to block transcription. Klocker H; Schneider R; Burtscher HJ; Auer B; Hirsch-Kauffmann M; Schweiger M Eur J Cell Biol; 1986 Jan; 39(2):346-51. PubMed ID: 3956512 [TBL] [Abstract][Full Text] [Related]
20. A processive versus a distributive mechanism of action correlates with differences in ability of normal and xeroderma pigmentosum group A endonucleases to incise damaged nucleosomal DNA. Feng S; Parrish DD; Lambert MW Carcinogenesis; 1997 Feb; 18(2):279-86. PubMed ID: 9054619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]