BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6163038)

  • 1. ATP-induced lysis of rat parotid secretory granules: possible role of ATP in exocytotic release.
    Oberg SG; Robinovitch MR
    J Supramol Struct; 1980; 13(3):295-304. PubMed ID: 6163038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of an ATP-dependent Ca2+ transport system in a plasma membrane enriched fraction from rat parotid.
    Low KG; Teo TS; Thiyagarajah P
    Biochem Int; 1987 May; 14(5):921-32. PubMed ID: 3454646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of valinomycin on osmotic lysis of zymogen granules and amylase exocytosis from parotid acini.
    Takuma T; Ichida T; Okumura K; Sasaki Y; Kanazawa M
    Am J Physiol; 1993 May; 264(5 Pt 1):G895-901. PubMed ID: 7684567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of chemiosmotic lysis in the exocytotic release of insulin.
    Pace CS; Smith JS
    Endocrinology; 1983 Sep; 113(3):964-9. PubMed ID: 6347669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual modulation of chloride conductance by nucleotides in pancreatic and parotid zymogen granules.
    Thévenod F; Gasser KW; Hopfer U
    Biochem J; 1990 Nov; 272(1):119-26. PubMed ID: 2264815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The heterotrimeric GTP-binding protein, GS, modulates the Cl- conductance of rat parotid acinar secretory granules.
    Watson EL; Izutsu KT; Jacobson KL; Dijulio DH
    Biochem Biophys Res Commun; 1997 Sep; 238(2):638-42. PubMed ID: 9299566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biophysical model of the chromaffin granule. Accurate description of the kinetics of ATP and Cl- dependent granule lysis.
    Creutz CE; Pollard HB
    Biophys J; 1980 Aug; 31(2):255-70. PubMed ID: 6455169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemiosmotic lysis and insulin secretion: studies of isolated granules, intact and permeabilised rat islets of Langerhans.
    Jones PM; Keaney JE; Howell SL
    Biochim Biophys Acta; 1987 Jul; 929(3):302-10. PubMed ID: 2440482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of plasma membrane-induced amylase release from rat parotid secretory granules: effects of Ca2+ and Mg-ATP.
    Mizuno M; Kameyama Y; Yashiro K; Shin SO; Yokota Y
    Biochim Biophys Acta; 1992 Apr; 1116(2):104-11. PubMed ID: 1374645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolated cortical granules: a model system for studying membrane fusion and calcium-mediated exocytosis.
    Vacquier VD
    J Supramol Struct; 1976; 5(1):27-35. PubMed ID: 11368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exocytosis in living salivary glands: direct visualization by video-enhanced microscopy and confocal laser microscopy.
    Segawa A; Terakawa S; Yamashina S; Hopkins CR
    Eur J Cell Biol; 1991 Apr; 54(2):322-30. PubMed ID: 1879441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secretory granule growth hormone and prolactin release: independence from granule membrane ATPase.
    Lorenson MY; Jacobs LS
    Endocrinology; 1984 Mar; 114(3):717-24. PubMed ID: 6230223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro reconstitution of chromaffin granule-cytoskeleton interactions: ionic factors influencing the association of F-actin with purified chromaffin granule membranes.
    Fowler VM; Pollard HB
    J Cell Biochem; 1982; 18(3):295-311. PubMed ID: 7068784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP-stimulated transmitter release and cyclic AMP synthesis in isolated chromaffin granules.
    Hoffman PG; Zinder O; Nikodijevic O; Pollard HB
    J Supramol Struct; 1976; 4(2):181-4. PubMed ID: 177813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative lack of ATP-driven H+ translocase activity in isolated parotid secretory granules.
    Arvan P; Rudnick G; Castle JD
    J Biol Chem; 1985 Dec; 260(28):14945-52. PubMed ID: 2866180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of AQP6 in the Mercury-sensitive osmotic lysis of rat parotid secretory granules.
    Matsuki-Fukushima M; Fujita-Yoshigaki J; Murakami M; Katsumata-Kato O; Yokoyama M; Sugiya H
    J Membr Biol; 2013 Mar; 246(3):209-14. PubMed ID: 23183829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloride transport across the membrane of parotid secretory granules.
    Gasser KW; Hopfer U
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C413-20. PubMed ID: 2399964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake of the neurotoxin, 4-methylphenylpyridinium, into chromaffin granules and synaptic vesicles: a proton gradient drives its uptake through monoamine transporter.
    Moriyama Y; Amakatsu K; Futai M
    Arch Biochem Biophys; 1993 Sep; 305(2):271-7. PubMed ID: 8373164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translocation of Arf1 to the secretory granules in rat parotid acinar cells.
    Dohke Y; Hara-Yokoyama M; Fujita-Yoshigaki J; Kahn RA; Kanaho Y; Hashimoto S; Sugiya H; Furuyama S
    Arch Biochem Biophys; 1998 Sep; 357(1):147-54. PubMed ID: 9721194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of release from isolated adrenergic secretory vesicles by ATP-mediated changes in transmembrane potential and anion permeability.
    Pollard HB; Pazoles CJ; Hoffman PG; Zinder O; Nikodijevik O
    Prog Clin Biol Res; 1977; 15():259-66. PubMed ID: 22084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.