These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 6163240)
1. [Healing of segmental defects in long bones. Animal experiments. Part II. Histological and micro-angiographical findings (author's transl)]. Schöttle H; Dallek M; Langendorff HU; Schöntag H; Jungbluth KH Unfallchirurgie; 1980; 6(2):71-8. PubMed ID: 6163240 [TBL] [Abstract][Full Text] [Related]
2. [Changes of bone-perfusion in osteosynthesis of the femur with a marrow-nail (author's transl)]. Kunze KG; Faupel L; Rittstieg U; Hofmann M Unfallchirurgie; 1981 Aug; 7(4):185-90. PubMed ID: 7303301 [TBL] [Abstract][Full Text] [Related]
3. Autogenous cancellous bone graft incorporation in a gap defect in the canine femur. Miclau T; Lindsey RW; Probe R; Rahn BA; Perren SM J Orthop Trauma; 1996; 10(2):108-13. PubMed ID: 8932669 [TBL] [Abstract][Full Text] [Related]
4. Bone induction using demineralized bone in the rabbit femur: a long-term study. Concannon MJ; Boschert MT; Puckett CL Plast Reconstr Surg; 1997 Jun; 99(7):1983-8. PubMed ID: 9180722 [TBL] [Abstract][Full Text] [Related]
5. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. Bruder SP; Kraus KH; Goldberg VM; Kadiyala S J Bone Joint Surg Am; 1998 Jul; 80(7):985-96. PubMed ID: 9698003 [TBL] [Abstract][Full Text] [Related]
6. Bony healing of large cranial and mandibular defects protected from soft-tissue interposition: A comparative study of spontaneous bone regeneration, osteoconduction, and cancellous autografting in dogs. Lemperle SM; Calhoun CJ; Curran RW; Holmes RE Plast Reconstr Surg; 1998 Mar; 101(3):660-72. PubMed ID: 9500382 [TBL] [Abstract][Full Text] [Related]
7. Hydrogel-based Delivery of rhBMP-2 Improves Healing of Large Bone Defects Compared With Autograft. Krishnan L; Priddy LB; Esancy C; Li MT; Stevens HY; Jiang X; Tran L; Rowe DW; Guldberg RE Clin Orthop Relat Res; 2015 Sep; 473(9):2885-97. PubMed ID: 25917422 [TBL] [Abstract][Full Text] [Related]
8. Comparison of three different types of scaffolds preseeded with human bone marrow mononuclear cells on the bone healing in a femoral critical size defect model of the athymic rat. Janko M; Sahm J; Schaible A; Brune JC; Bellen M; Schroder K; Seebach C; Marzi I; Henrich D J Tissue Eng Regen Med; 2018 Mar; 12(3):653-666. PubMed ID: 28548246 [TBL] [Abstract][Full Text] [Related]
9. Healing of segmental and simple fractures in rats. Utvåg SE; Grundnes O; Reikerås O Acta Orthop Scand; 1994 Oct; 65(5):559-63. PubMed ID: 7801763 [TBL] [Abstract][Full Text] [Related]
10. The stability of osteosyntheses bridging defects. Sauer HD; Schoettle H Arch Orthop Trauma Surg (1978); 1979 Oct; 95(1-2):27-30. PubMed ID: 393202 [TBL] [Abstract][Full Text] [Related]
11. Distribution of bone marrow-derived cells in the fracture callus during plate fixation in a green fluorescent protein-chimeric mouse model. Ueno M; Uchida K; Takaso M; Minehara H; Suto K; Takahira N; Steck R; Schuetz MA; Itoman M Exp Anim; 2011; 60(5):455-62. PubMed ID: 22041282 [TBL] [Abstract][Full Text] [Related]
12. Influence of the induced membrane filled with syngeneic bone and regenerative cells on bone healing in a critical size defect model of the rat's femur. Nau C; Simon S; Schaible A; Seebach C; Schröder K; Marzi I; Henrich D Injury; 2018 Oct; 49(10):1721-1731. PubMed ID: 30244700 [TBL] [Abstract][Full Text] [Related]
13. Filling the bone defect with osteogenic material. An experimental study. Göransson H; Vuola J; Linden M; Pätiälä H; Rokkanen P Arch Orthop Trauma Surg; 1995; 114(3):172-8. PubMed ID: 7619639 [TBL] [Abstract][Full Text] [Related]
14. [Comparison of effect between vascularization osteogenesis and membrane guided osteogenesis in bone repair by tissue engineered bone with pedicled fascial flap packing autologous red bone marrow]. Yang X; Zhang L; Meng X; Wang Y; Shi W; Du Y; Hu Z; Yin Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Jun; 25(6):729-35. PubMed ID: 21735789 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical and biological aspects of defect treatment in fractures using helical plates. Perren SM; Regazzoni P; Fernandez AA Acta Chir Orthop Traumatol Cech; 2014; 81(4):267-71. PubMed ID: 25137496 [TBL] [Abstract][Full Text] [Related]
16. [Revascularization of a free autologous transplant in correcting an extensive defect of the long bone by bilocal osteosynthesis using the Ilizarov method]. Barabash AP; Larionov AA; Chirkova AM Ortop Travmatol Protez; 1988 Dec; (12):6-10. PubMed ID: 2470005 [No Abstract] [Full Text] [Related]
17. Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model. Kaempfen A; Todorov A; Güven S; Largo RD; Jaquiéry C; Scherberich A; Martin I; Schaefer DJ Int J Mol Sci; 2015 Jun; 16(6):12616-30. PubMed ID: 26053395 [TBL] [Abstract][Full Text] [Related]
18. Treatment of a large segmental bone defect with allograft and autogenous bone marrow graft. Jean JL; Wang SJ; Au MK J Formos Med Assoc; 1997 Jul; 96(7):553-7. PubMed ID: 9262062 [TBL] [Abstract][Full Text] [Related]
19. NELL1 promotes high-quality bone regeneration in rat femoral distraction osteogenesis model. Xue J; Peng J; Yuan M; Wang A; Zhang L; Liu S; Fan M; Wang Y; Xu W; Ting K; Zhang X; Lu S Bone; 2011 Mar; 48(3):485-95. PubMed ID: 20959151 [TBL] [Abstract][Full Text] [Related]
20. Plate augmentation and autologous bone grafting after intramedullary nailing for challenging femoral bone defects: a technical note. Yang KH; Won Y; Kim SB; Oh BH; Park YC; Jeong SJ Arch Orthop Trauma Surg; 2016 Oct; 136(10):1381-5. PubMed ID: 27450062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]