These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 6163402)
1. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation]. Dejonckere P; Lebacq J Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402 [TBL] [Abstract][Full Text] [Related]
2. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. II. Vocalic attach and end of emission]. Dejonckere P; Lebacq J Arch Int Physiol Biochim; 1980 Oct; 88(4):343-55. PubMed ID: 6163403 [TBL] [Abstract][Full Text] [Related]
3. An experimental analysis of the pressures and flows within a driven mechanical model of phonation. Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957 [TBL] [Abstract][Full Text] [Related]
4. [Phonatory physiology of the larynx: the oscillo-impedance concept]. Dejonckere PH Rev Laryngol Otol Rhinol (Bord); 1987; 108 Spec No():365-8. PubMed ID: 3441692 [No Abstract] [Full Text] [Related]
5. The influence of epilarynx area on vocal fold dynamics. Döllinger M; Berry DA; Montequin DW Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302 [TBL] [Abstract][Full Text] [Related]
6. Dynamic MRI of larynx and vocal fold vibrations in normal phonation. Ahmad M; Dargaud J; Morin A; Cotton F J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of initiation of oscillatory motion in human glottis. Dejonckere P; Lebacq J Arch Int Physiol Biochim; 1981 May; 89(2):127-36. PubMed ID: 6167230 [TBL] [Abstract][Full Text] [Related]
8. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions. Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175 [TBL] [Abstract][Full Text] [Related]
9. Aerodynamic profiles of a hemilarynx with a vocal tract. Alipour F; Montequin D; Tayama N Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):550-5. PubMed ID: 11407846 [TBL] [Abstract][Full Text] [Related]
10. Direct measurement of pressures involved in vocal exercises using semi-occluded vocal tracts. Robieux C; Galant C; Lagier A; Legou T; Giovanni A Logoped Phoniatr Vocol; 2015 Oct; 40(3):106-12. PubMed ID: 24850270 [TBL] [Abstract][Full Text] [Related]
11. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English. Monsen RB; Engebretson AM; Vemula NR J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003 [TBL] [Abstract][Full Text] [Related]
12. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics. Chan RW; Titze IR J Acoust Soc Am; 2006 Apr; 119(4):2351-62. PubMed ID: 16642848 [TBL] [Abstract][Full Text] [Related]
13. Experimental analysis of the characteristics of artificial vocal folds. Misun V; Svancara P; Vasek M J Voice; 2011 May; 25(3):308-18. PubMed ID: 20359864 [TBL] [Abstract][Full Text] [Related]
14. On the relation between subglottal pressure and fundamental frequency in phonation. Titze IR J Acoust Soc Am; 1989 Feb; 85(2):901-6. PubMed ID: 2926005 [TBL] [Abstract][Full Text] [Related]
15. Effect of superior laryngeal nerve on vocal fold function: an in vivo canine model. Slavit DH; McCaffrey TV; Yanagi E Otolaryngol Head Neck Surg; 1991 Dec; 105(6):857-63. PubMed ID: 1787976 [TBL] [Abstract][Full Text] [Related]
18. Effect of the ventricular folds in a synthetic larynx model. Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747 [TBL] [Abstract][Full Text] [Related]
19. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method. Luo H; Mittal R; Bielamowicz SA J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046 [TBL] [Abstract][Full Text] [Related]
20. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds. Zhang Z; Neubauer J; Berry DA J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]