These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 6163403)
1. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. II. Vocalic attach and end of emission]. Dejonckere P; Lebacq J Arch Int Physiol Biochim; 1980 Oct; 88(4):343-55. PubMed ID: 6163403 [TBL] [Abstract][Full Text] [Related]
2. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation]. Dejonckere P; Lebacq J Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of initiation of oscillatory motion in human glottis. Dejonckere P; Lebacq J Arch Int Physiol Biochim; 1981 May; 89(2):127-36. PubMed ID: 6167230 [TBL] [Abstract][Full Text] [Related]
5. Subglottic pressure and induced live voices of dogs with normal, reinnervated, and paralyzed larynges. I. On voice function of the dog with a normal larynx. Ueda N; Oyama M; Harvey JE; Mogi G; Ogura JH Laryngoscope; 1971 Dec; 81(12):1948-59. PubMed ID: 5129777 [No Abstract] [Full Text] [Related]
6. Effect of superior laryngeal nerve on vocal fold function: an in vivo canine model. Slavit DH; McCaffrey TV; Yanagi E Otolaryngol Head Neck Surg; 1991 Dec; 105(6):857-63. PubMed ID: 1787976 [TBL] [Abstract][Full Text] [Related]
7. [Phonatory physiology of the larynx: the oscillo-impedance concept]. Dejonckere PH Rev Laryngol Otol Rhinol (Bord); 1987; 108 Spec No():365-8. PubMed ID: 3441692 [No Abstract] [Full Text] [Related]
8. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions. Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175 [TBL] [Abstract][Full Text] [Related]
9. Phonatory vocal fold function in the excised canine larynx. Slavit DH; Lipton RJ; McCaffrey TV Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129 [TBL] [Abstract][Full Text] [Related]
10. Aerodynamics of the human larynx during vocal fold vibration. Plant RL Laryngoscope; 2005 Dec; 115(12):2087-100. PubMed ID: 16369149 [TBL] [Abstract][Full Text] [Related]
11. Correspondence of electroglottographic closed quotient to vocal fold impact stress in excised canine larynges. Verdolini K; Chan R; Titze IR; Hess M; Bierhals W J Voice; 1998 Dec; 12(4):415-23. PubMed ID: 9988028 [TBL] [Abstract][Full Text] [Related]
12. Aerodynamic profiles of a hemilarynx with a vocal tract. Alipour F; Montequin D; Tayama N Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):550-5. PubMed ID: 11407846 [TBL] [Abstract][Full Text] [Related]
13. Dynamic MRI of larynx and vocal fold vibrations in normal phonation. Ahmad M; Dargaud J; Morin A; Cotton F J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366 [TBL] [Abstract][Full Text] [Related]
14. On the difference between negative damping and eigenmode synchronization as two phonation onset mechanisms. Zhang Z J Acoust Soc Am; 2011 Apr; 129(4):2163-7. PubMed ID: 21476671 [TBL] [Abstract][Full Text] [Related]
15. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx. Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787 [TBL] [Abstract][Full Text] [Related]
17. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production. Zhang Z J Acoust Soc Am; 2023 Oct; 154(4):2462-2475. PubMed ID: 37855666 [TBL] [Abstract][Full Text] [Related]
18. The influence of epilarynx area on vocal fold dynamics. Döllinger M; Berry DA; Montequin DW Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302 [TBL] [Abstract][Full Text] [Related]
19. Vocal power and pressure-flow relationships in excised tiger larynges. Titze IR; Fitch WT; Hunter EJ; Alipour F; Montequin D; Armstrong DL; McGee J; Walsh EJ J Exp Biol; 2010 Nov; 213(Pt 22):3866-73. PubMed ID: 21037066 [TBL] [Abstract][Full Text] [Related]
20. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling. Moisik SR; Esling JH J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]