These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 6163403)
21. Estimating vocal fold stiffness: Using the relationship between subglottic pressure and fundamental frequency of phonation as an analog. Tseng WH; Chang CC; Yang TL; Hsiao TY Clin Otolaryngol; 2020 Jan; 45(1):40-46. PubMed ID: 31625675 [TBL] [Abstract][Full Text] [Related]
22. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx. Slavit DH; McCaffrey TV Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519 [TBL] [Abstract][Full Text] [Related]
23. [Anatomy of the glottis and subglottis in the pediatric larynx]. Eckel HE; Sprinzl GM; Sittel C; Koebke J; Damm M; Stennert E HNO; 2000 Jul; 48(7):501-7. PubMed ID: 10955227 [TBL] [Abstract][Full Text] [Related]
25. An experimental analysis of the pressures and flows within a driven mechanical model of phonation. Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957 [TBL] [Abstract][Full Text] [Related]
26. The physics of small-amplitude oscillation of the vocal folds. Titze IR J Acoust Soc Am; 1988 Apr; 83(4):1536-52. PubMed ID: 3372869 [TBL] [Abstract][Full Text] [Related]
27. Dynamic movement of air tract fluid in lubrication of the larynx during phonation: a basic study using excised canine larynges and experimental air tract fluid by means of X-ray stroboscope system. Kawaida M; Fukuda H; Kano S; Shiotani A; Kohno N Auris Nasus Larynx; 1990; 16(4):237-43. PubMed ID: 2360887 [TBL] [Abstract][Full Text] [Related]
28. Study of the mechanism of vocal fold vibration during phonation. Meyer B; Candau P; Alcaras N; MacLeod P Acta Otolaryngol; 1984; 97(5-6):407-14. PubMed ID: 6464699 [TBL] [Abstract][Full Text] [Related]
29. Vocal fold dynamics for frequency change. Hollien H J Voice; 2014 Jul; 28(4):395-405. PubMed ID: 24726331 [TBL] [Abstract][Full Text] [Related]
30. Effects of length and depth of vibration of the vocal folds on the relationship between transglottal pressure and fundamental frequency of phonation in canine larynges. Kataoka K; Kitajima K Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):556-61. PubMed ID: 11407847 [TBL] [Abstract][Full Text] [Related]
31. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds. Tao C; Zhang Y; Hottinger DG; Jiang JJ J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863 [TBL] [Abstract][Full Text] [Related]
32. Separate detection of vocal fold vibration by optoreflectometry: a study of biphonation on excised porcine larynges. Ouaknine M; Garrel R; Giovanni A Folia Phoniatr Logop; 2003; 55(1):28-38. PubMed ID: 12566764 [TBL] [Abstract][Full Text] [Related]
33. [Functional and experimental investigations on phonation of the primates with special reference to the spontaneous muffling of the vocal cords during vibration]. Minnigerode B Arch Ohren Nasen Kehlkopfheilkd; 1965 Jul; 184(5):403-10. PubMed ID: 5848248 [No Abstract] [Full Text] [Related]
34. Effect of the ventricular folds in a synthetic larynx model. Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747 [TBL] [Abstract][Full Text] [Related]