These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 616356)

  • 41. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles.
    Cheng L; Sacktor B
    J Biol Chem; 1981 Feb; 256(4):1556-64. PubMed ID: 7462213
    [No Abstract]   [Full Text] [Related]  

  • 42. The mechanism of Na+-L-lactate cotransport by brush border membrane vesicles from horse kidney: analysis of rapid equilibrium kinetics in absence of membrane potential.
    Mengual R; Sudaka P
    J Membr Biol; 1983; 71(3):163-71. PubMed ID: 6842580
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Active transport of taurine in rabbit jejunal brush-border membrane vesicles.
    Miyamoto Y; Tiruppathi C; Ganapathy V; Leibach FH
    Am J Physiol; 1989 Jul; 257(1 Pt 1):G65-72. PubMed ID: 2750911
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Light-dependent cation gradients and electrical potential in Halobacterium halobium cell envelope vesicles.
    Lanyi JK; MacDonald RE
    Fed Proc; 1977 May; 36(6):1824-7. PubMed ID: 15877
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The mechanism of decreased Na+-dependent D-glucose transport in brush-border membrane vesicles from rabbit kidneys with experimental Fanconi syndrome.
    Orita Y; Fukuhara Y; Yanase M; Okada N; Nakanishi T; Horio M; Moriyama T; Ando A; Abe H
    Biochim Biophys Acta; 1984 Apr; 771(2):195-200. PubMed ID: 6538438
    [TBL] [Abstract][Full Text] [Related]  

  • 46. L-glutamate transport in renal plasma membrane vesicles.
    Sacktor B
    Mol Cell Biochem; 1981 Sep; 39():239-51. PubMed ID: 6118822
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetics of D-glucose transport across the intestinal brush-border membrane of the cat.
    Wolffram S; Eggenberger E; Scharrer E
    Comp Biochem Physiol A Comp Physiol; 1989; 94(1):111-5. PubMed ID: 2571446
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glycodeoxycholate transport in brush border membrane vesicles isolated from rat jejunum and ileum.
    Wilson FA; Treanor LL
    Biochim Biophys Acta; 1979 Jul; 554(2):430-40. PubMed ID: 486452
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glucose transport by horse kidney brush borders. I.--Transport properties of brush border membrane closed vesicles.
    Poirée JC; Vannier C; Sudaka P; Fehlmann M
    Biochimie; 1978 Sep; 60(6-7):645-51. PubMed ID: 719044
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of ethanol in vitro on rat intestinal brush-border membranes.
    Hunter CK; Treanor LL; Gray JP; Halter SA; Hoyumpa A; Wilson FA
    Biochim Biophys Acta; 1983 Jul; 732(1):256-65. PubMed ID: 6871193
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro ethanol effects on the transport properties of isolated renal brush-border membrane vesicles.
    Elgavish A; Elgavish GA
    J Membr Biol; 1985; 88(2):123-30. PubMed ID: 4093956
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of phlorizin derivatives and their inhibitory effect on the renal sodium/D-glucose cotransport system.
    Lin JT; Hahn KD; Kinne R
    Biochim Biophys Acta; 1982 Dec; 693(2):379-88. PubMed ID: 7159584
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sodium gradient dependence of proline and glycine uptake in rat renal brush-border membrane vesicles.
    McNamara PD; Pepe LM; Segal S
    Biochim Biophys Acta; 1979 Sep; 556(1):151-60. PubMed ID: 476115
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Some characteristics of kidney Na+ -dependent glucose carrier reconstituted into sonicated liposomes.
    Crane RK; Malathi P; Preiser H; Fairclough P
    Am J Physiol; 1978 Jan; 234(1):E1-5. PubMed ID: 623242
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electroneutral Na+/dicarboxylic amino acid cotransport in rat intestinal brush border membrane vesicles.
    Corcelli A; Prezioso G; Palmieri F; Storelli C
    Biochim Biophys Acta; 1982 Jul; 689(1):97-105. PubMed ID: 6125215
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake.
    Burckhardt G; Kinne R; Stange G; Murer H
    Biochim Biophys Acta; 1980 Jun; 599(1):191-201. PubMed ID: 7397147
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temperature dependence of solute transport and enzyme activities in hog renal brush border membrane vesicles.
    De Smedt H; Kinne R
    Biochim Biophys Acta; 1981 Nov; 648(2):247-53. PubMed ID: 7306539
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphate uptake by renal membrane vesicles of rabbits adapted to high and low phosphorus diets.
    Cheng L; Liang CT; Sacktor B
    Am J Physiol; 1983 Aug; 245(2):F175-80. PubMed ID: 6881335
    [TBL] [Abstract][Full Text] [Related]  

  • 59. alpha-MeGlc and D-glucose transport by hepatopancreatic brush border membrane vesicles from prawn.
    Blaya JA; Vázquez CM; Muriana FJ; Ruiz-Gutiérrez V; Bolufer J
    J Physiol Biochem; 1998 Mar; 54(1):1-7. PubMed ID: 9732102
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sodium-coupled electrogenic transport of pyroglutamate (5-oxoproline) via SLC5A8, a monocarboxylate transporter.
    Miyauchi S; Gopal E; Babu E; Srinivas SR; Kubo Y; Umapathy NS; Thakkar SV; Ganapathy V; Prasad PD
    Biochim Biophys Acta; 2010 Jun; 1798(6):1164-71. PubMed ID: 20211600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.