These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 6163779)

  • 1. Reconstitution of the proton-translocating adenosine triphosphatase of yeast plasma membranes.
    Malpartida F; Serrano R
    J Biol Chem; 1981 May; 256(9):4175-7. PubMed ID: 6163779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial purification and properties of the proton-translocating ATPase of plant plasma membranes.
    Vara F; Serrano R
    J Biol Chem; 1982 Nov; 257(21):12826-30. PubMed ID: 6215404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrogenic proton translocation coupled to ATP hydrolysis by the plasma membrane Mg2+-dependent ATPase of yeast in reconstituted proteoliposomes.
    Villalobo A; Boutry M; Goffeau A
    J Biol Chem; 1981 Dec; 256(23):12081-7. PubMed ID: 6117557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-linked transhydrogenase. Effects of valinomycin and nigericin on the ATP-driven transhydrogenase reaction catalyzed by reconstituted transhydrogenase-ATPase vesicles.
    Eytan GD; Carlenor E; Rydström J
    J Biol Chem; 1990 Aug; 265(22):12949-54. PubMed ID: 2142942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the subunit composition of the Neurospora plasma membrane H+-ATPase.
    Scarborough GA; Addison R
    J Biol Chem; 1984 Jul; 259(14):9109-14. PubMed ID: 6235222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium transport coupled to ATP hydrolysis in reconstituted proteoliposomes of yeast plasma membrane ATPase.
    Villalobo A
    J Biol Chem; 1982 Feb; 257(4):1824-8. PubMed ID: 6120168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delta pH, H+ diffusion potentials, and Mg2+ ATPase in neurosecretory vesicles isolated from bovine neurohypophyses.
    Russell JT
    J Biol Chem; 1984 Aug; 259(15):9496-507. PubMed ID: 6146615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deficiency of uncoupler-stimulated adenosine triphosphatase activity in yeast mitochondria.
    Ezzahid Z; Rigoulet M; Guérin B
    J Gen Microbiol; 1986 May; 132(5):1153-8. PubMed ID: 2945901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ionophores CCCP and Gramicidin but Not Nigericin Inhibit
    Petersen LM; Beitz E
    Cells; 2020 Oct; 9(10):. PubMed ID: 33096791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of bacteriorhodopsin and ATP synthase from Micrococcus luteus into liposomes of the purified main tetraether lipid from Thermoplasma acidophilum: proton conductance and light-driven ATP synthesis.
    Freisleben HJ; Zwicker K; Jezek P; John G; Bettin-Bogutzki A; Ring K; Nawroth T
    Chem Phys Lipids; 1995 Nov; 78(2):137-47. PubMed ID: 8565113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemiosmotic coupling in Methanobacterium thermoautotrophicum: hydrogen-dependent adenosine 5'-triphosphate synthesis by subcellular particles.
    Doddema HJ; van der Drift C; Vogels GD; Veenhuis M
    J Bacteriol; 1979 Dec; 140(3):1081-9. PubMed ID: 160408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of ATP by the adenosine triphosphatase complex from spinach chloroplasts reconstituted together with bacteriorhodopsin.
    Winget GD; Kanner N; Racker E
    Biochim Biophys Acta; 1977 Jun; 460(3):490-9. PubMed ID: 141938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubilization and reconstitution of the adenosine 5'-triphosphate dependent proton translocase of bovine chromaffin granule membrane.
    Giraudat J; Roisin MP; Henry JP
    Biochemistry; 1980 Sep; 19(19):4499-505. PubMed ID: 6157410
    [No Abstract]   [Full Text] [Related]  

  • 14. Energy-linked activities in reconstituted yeast adenosine triphosphatase proteoliposome. Adenosine triphosphate formation coupled with electron flow between ascorbate and ferricyanide.
    Ryrie IJ; Blackmore PF
    Arch Biochem Biophys; 1976 Sep; 176(1):127-35. PubMed ID: 135528
    [No Abstract]   [Full Text] [Related]  

  • 15. Energy coupling of L-glutamate transport and vacuolar H(+)-ATPase in brain synaptic vesicles.
    Moriyama Y; Maeda M; Futai M
    J Biochem; 1990 Oct; 108(4):689-93. PubMed ID: 2149857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH dependence of H+ conduction through the membrane moiety of the H+-ATPase (F0 . F1) and effects of tyrosyl residue modification.
    Sone N; Hamamoto T; Kagawa Y
    J Biol Chem; 1981 Mar; 256(6):2873-7. PubMed ID: 6451621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Active electrogenic transport H+ in plasma membrane vesicles of cow parsnip phloem cells].
    Kalinin VA; Opritov VA; Shvets IM
    Biofizika; 1982; 27(1):58-61. PubMed ID: 6461361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The identification of a proton pump on vacuoles of the yeast Saccharomyces carlsbergensis. ATPase is electrogenic H+-translocase.
    Okorokov LA; Lichko LP
    FEBS Lett; 1983 May; 155(1):102-6. PubMed ID: 6220921
    [No Abstract]   [Full Text] [Related]  

  • 19. Reconstitution of ATP-dependent calcium transport from streptococci.
    Ambudkar SV; Lynn AR; Maloney PC; Rosen BP
    J Biol Chem; 1986 Nov; 261(33):15596-600. PubMed ID: 3096992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton ATPase in rat renal cortical endocytotic vesicles.
    Sabolić I; Burckhardt G
    Biochim Biophys Acta; 1988 Jan; 937(2):398-410. PubMed ID: 2447951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.