These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 6164256)

  • 1. Auxin and gibberellin-like substances synthesis by Fusarium isolates pathogenic to corn seedlings.
    Mańka M
    Acta Microbiol Pol; 1980; 29(4):365-74. PubMed ID: 6164256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulolytic and pectolytic activity of Fusarium isolates pathogenic to corn seedlings.
    Mańka M
    Acta Microbiol Pol; 1981; 30(1):25-32. PubMed ID: 6167145
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of the culture medium and incubation time on auxins production by bacteria isolated from the roots of pine seedlings (Pinus silvestris l.).
    Pokojska A; Strzelczyk E
    Acta Microbiol Pol; 1976; 25(4):313-9. PubMed ID: 65104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of carbon and nitrogen sources on auxins and gibberellin-like substances synthesis by bacteria isolated from the roots of pine seedlings (Pinus silvestris L).
    Pokojska-Burdziej A
    Acta Microbiol Pol; 1981; 30(4):347-54. PubMed ID: 6179394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of auxins by bacteria isolated from the roots of pine seedlings (Pinus silvestris L.).
    Kampert M; Strzelczyk E; Pokojska A
    Acta Microbiol Pol B; 1975; 7(2):135-43. PubMed ID: 1166831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gibberellic acid production by Fusarium moniliforme on lupin seed extract.
    Gulewicz K; Rataj-Guranowska M; Lukaszewska N; Michalski Z
    Acta Microbiol Pol; 1994; 43(1):73-7. PubMed ID: 7526618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of auxins by fungi isolated from the roots of pine seedings (Pinus silvestris L.) and from soil.
    Kampert M; Strzelczyk E
    Acta Microbiol Pol B; 1975; 7(4):223-30. PubMed ID: 1227253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of gibberellin-like substances by bacteria and fungi isolated from the roots of pine seedlings (Pinus silvestris L.).
    Kampert M; Strzelczyk E; Pokojska A
    Acta Microbiol Pol B; 1975; 7(3):157-66. PubMed ID: 811087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of auxins from tryptophan and tryptophan-precursors by fungi isolated from mycorrhizae of pine (Pinus silvestris L.).
    Strzelczyk E; Sitek JM; Kowalski S
    Acta Microbiol Pol; 1977; 26(3):255-64. PubMed ID: 70970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auxin production of three phytopathogenic fungi.
    Gunasekaran M; Weber DJ
    Mycologia; 1972; 64(5):1180-3. PubMed ID: 4673330
    [No Abstract]   [Full Text] [Related]  

  • 11. Gibberellin and auxin-indole production by plant root-fungi and their biosynthesis under salinity-calcium interaction.
    Hasan HA
    Acta Microbiol Immunol Hung; 2002; 49(1):105-18. PubMed ID: 12073817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanism of gibberellin--auxin interaction. I. Effect of gibberellin on the quantity of free IAA and IAA conjugates in bean hypocotyl tissues.
    Varga M; Bitó M
    Acta Biol Acad Sci Hung; 1968; 19(4):445-53. PubMed ID: 5731013
    [No Abstract]   [Full Text] [Related]  

  • 13. The effect of culture medium composition and incubation time on synthesis of gibberellin-like substances by bacteria isolated from the roots of pine seedlings (Pinus silvestris L.).
    Pokojska-Burdziej A
    Acta Microbiol Pol; 1981; 30(2):203-12. PubMed ID: 6168181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase.
    Bottini R; Cassán F; Piccoli P
    Appl Microbiol Biotechnol; 2004 Oct; 65(5):497-503. PubMed ID: 15378292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of Crown daisy (Chrysanthemum coronarium).
    Hamayun M; Khan SA; Iqbal I; Ahmad B; Lee IJ
    J Microbiol Biotechnol; 2010 Jan; 20(1):202-7. PubMed ID: 20134253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light interacts with auxin during leaf elongation and leaf angle development in young corn seedlings.
    Fellner M; Horton LA; Cocke AE; Stephens NR; Ford ED; Van Volkenburgh E
    Planta; 2003 Jan; 216(3):366-76. PubMed ID: 12520327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biosynthesis of gibberellins. III. Optimization of the nutrient medium for gibberellin biosynthesis by using mathematical methods to plan experiments].
    Gancheva V; Dimova Ts; Kamenov K; Futekova M
    Acta Microbiol Bulg; 1984; 14():80-4. PubMed ID: 6741619
    [No Abstract]   [Full Text] [Related]  

  • 18. Production of gibberellin-like substances by fungi isolated from mycorrhizae of pine (Pinus silvestris/L.).
    Strzelczyk E; Sitek J; Kowalski S
    Acta Microbiol Pol B; 1975; 7(2):145-53. PubMed ID: 1172649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auxin biosynthesis in maize.
    Kriechbaumer V; Park WJ; Gierl A; Glawischnig E
    Plant Biol (Stuttg); 2006 May; 8(3):334-9. PubMed ID: 16807825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auxin biosynthesis in maize kernels.
    Glawischnig E; Tomas A; Eisenreich W; Spiteller P; Bacher A; Gierl A
    Plant Physiol; 2000 Jul; 123(3):1109-19. PubMed ID: 10889260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.