These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 616483)

  • 1. Reconstitution of D-glucose transport in vesicles composed of lipids and intrinsic protein (zone 4.5) of the human erythrocyte membrane.
    Kahlenberg A; Zala CA
    J Supramol Struct; 1977; 7(3-4):287-300. PubMed ID: 616483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythrocyte D-glucose transport activity in reconstituted model membranes of different lipid composition.
    Cestaro B; Cervato G; Carandente O; Girardi AM; Pozza G
    Biochem Int; 1988 Feb; 16(2):323-9. PubMed ID: 3365265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental changes in glucose transport of guinea pig erythrocytes.
    Kondo T; Beutler E
    J Clin Invest; 1980 Jan; 65(1):1-4. PubMed ID: 7350191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solubilization, reconstitution, and attempted affinity chromatography of the sugar transporter of the erythrocyte membrane.
    Weber J; Warden DA; Semenza G; Diedrich DF
    J Cell Biochem; 1985; 27(2):83-96. PubMed ID: 4039332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cholesterol on the reconstituted D-glucose transport system of human erythrocyte membranes.
    Fröman G
    Tokai J Exp Clin Med; 1982; 7 Suppl():131-3. PubMed ID: 6892255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and properties of the glucose transporter of human erythrocytes.
    Hirano H; Kasahara M; Nagano M; Osumi M; Sase S; Takata K
    Tokai J Exp Clin Med; 1982; 7 Suppl():121-9. PubMed ID: 6892254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of glucose-transporting vesicles from erythrocyte membranes disaggregated in detergent.
    Edwards PA
    Biochem J; 1977 Apr; 164(1):125-9. PubMed ID: 880225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the glucose transporter from human erythrocytes.
    Sogin DC; Hinkle PC
    J Supramol Struct; 1978; 8(4):447-53. PubMed ID: 723277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional reconstitution of the Trypanosoma brucei plasma-membrane D-glucose transporter.
    Seyfang A; Duszenko M
    Eur J Biochem; 1993 Jun; 214(2):593-7. PubMed ID: 8513808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention of insulin-stimulated D-glucose transport activity by adipocyte plasma membranes following extraction of extrinsic proteins.
    Pillion DJ; Shanahan MF; Czech MP
    J Supramol Struct; 1978; 8(3):269-77. PubMed ID: 723265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of Ca2+ on glucose penetration through the pink ghosts of human erythrocytes].
    Matus VK; Kozlova NM; Chernitskiĭ EA
    Biofizika; 1979; 24(2):242-7. PubMed ID: 444601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of the erythrocyte anion transport system: recent progress.
    Scheuring U; Grieshaber G; Kollewe K; Kojro Z; Ruf H; Grell E; Haase W; Schubert D
    Biomed Biochim Acta; 1987; 46(2-3):S46-50. PubMed ID: 3593315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of neutral amino acid transport from partially purified membrane components from Ehrlich ascites tumor cells.
    Cecchini G; Payne GS; Oxender DL
    J Supramol Struct; 1977; 7(3-4):481-7. PubMed ID: 567720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes.
    Kasahara M; Hinkle PC
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):396-400. PubMed ID: 1061142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of liposomes with human erythrocyte ghosts.
    Greidziak M; Ehrke R; Baust G; Torchilin VP; Lasch J
    Biomed Biochim Acta; 1990; 49(4):189-200. PubMed ID: 2403338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution studies of the human erythrocyte nucleoside transporter.
    Tse CM; Belt JA; Jarvis SM; Paterson AR; Wu JS; Young JD
    J Biol Chem; 1985 Mar; 260(6):3506-11. PubMed ID: 3972834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose transport in vesicles reconstituted from Saccharomyces cerevisiae membranes and liposomes.
    Ongjoco R; Szkutnicka K; Cirillo VP
    J Bacteriol; 1987 Jul; 169(7):2926-31. PubMed ID: 2954946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose transport carrier of human erythrocytes. Radiation-target size of glucose-sensitive cytochalasin B binding protein.
    Jung CY; Hsu TL; Hah JS; Cha C; Haas MN
    J Biol Chem; 1980 Jan; 255(2):361-4. PubMed ID: 7356617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of the alanine carrier from the membranes of a thermophilic bacterium and its reconstitution into vesicles capable of transport.
    Hirata H; Sone N; Yoshida M; Kagawa Y
    J Supramol Struct; 1977; 6(1):77-84. PubMed ID: 197318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.