These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 6164962)

  • 1. Cortical projections to the periaqueductal gray in the monkey: a retrograde and orthograde horseradish peroxidase study.
    Hardy SG; Leichnetz GR
    Neurosci Lett; 1981 Mar; 22(2):97-101. PubMed ID: 6164962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frontal cortical projections to the periaqueductal gray in the rat: a retrograde and orthograde horseradish peroxidase study.
    Hardy SG; Leichnetz GR
    Neurosci Lett; 1981 Apr; 23(1):13-7. PubMed ID: 6164964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical projections to the paramedian tegmental and basilar pons in the monkey.
    Leichnetz GR; Smith DJ; Spencer RF
    J Comp Neurol; 1984 Sep; 228(3):388-408. PubMed ID: 6480918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prearcuate cortex in the Cebus monkey has cortical and subcortical connections like the macaque frontal eye field and projects to fastigial-recipient oculomotor-related brainstem nuclei.
    Leichnetz GR; Gonzalo-Ruiz A
    Brain Res Bull; 1996; 41(1):1-29. PubMed ID: 8883912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connections of the medial posterior parietal cortex (area 7m) in the monkey.
    Leichnetz GR
    Anat Rec; 2001 Jun; 263(2):215-36. PubMed ID: 11360237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal connections between the medial preoptic area and the midbrain periaqueductal gray in rat: a WGA-HRP and PHA-L study.
    Rizvi TA; Ennis M; Shipley MT
    J Comp Neurol; 1992 Jan; 315(1):1-15. PubMed ID: 1371779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical projections to the periaqueductal grey in the cat: a retrograde horseradish peroxidase study.
    Bragin EO; Yeliseeva ZV; Vasilenko GF; Meizerov EE; Chuvin BT; Durinyan RA
    Neurosci Lett; 1984 Oct; 51(2):271-5. PubMed ID: 6514241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The afferent and efferent organization of the lateral geniculo-prestriate pathways in the macaque monkey.
    Benevento LA; Yoshida K
    J Comp Neurol; 1981 Dec; 203(3):455-74. PubMed ID: 6274921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Callosal projections of the striate cortex in the neonatal rabbit.
    Chow KL; Baumbach HD; Lawson R
    Exp Brain Res; 1981; 42(2):122-6. PubMed ID: 6167458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Corticofugal projections to the periaqueductal gray matter in the cat midbrain].
    Bragin EO; Eliseeva ZV; Vasilenko GF; Meĭzerov EE; Chuvin BT
    Biull Eksp Biol Med; 1984 Jun; 97(6):737-40. PubMed ID: 6743817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: a retrograde study using HRP-gel.
    Arikuni T; Kubota K
    J Comp Neurol; 1986 Feb; 244(4):492-510. PubMed ID: 2420836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical projections to nuclei adjacent to the oculomotor complex in the medial dien-mesencephalic tegmentum in the monkey.
    Leichnetz GR; Spencer RF; Smith DJ
    J Comp Neurol; 1984 Sep; 228(3):359-87. PubMed ID: 6480917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortico-cortical projections from the prefrontal cortex to the superior temporal sulcal area (STs) in the monkey studied by means of HRP method.
    Ban T; Shiwa T; Kawamura K
    Arch Ital Biol; 1991 Sep; 129(4):259-72. PubMed ID: 1724147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis.
    Russchen FT; Amaral DG; Price JL
    J Comp Neurol; 1987 Feb; 256(2):175-210. PubMed ID: 3549796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for an amygdaloid projection to premotor cortex but not to motor cortex in the monkey.
    Avendaño C; Price JL; Amaral DG
    Brain Res; 1983 Mar; 264(1):111-7. PubMed ID: 6189549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat.
    Van Bockstaele EJ; Aston-Jones G; Pieribone VA; Ennis M; Shipley MT
    J Comp Neurol; 1991 Jul; 309(3):305-27. PubMed ID: 1717516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys.
    Giguere M; Goldman-Rakic PS
    J Comp Neurol; 1988 Nov; 277(2):195-213. PubMed ID: 2466057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The prefrontal corticotectal projection in the monkey; an anterograde and retrograde horseradish peroxidase study.
    Leichnetz GR; Spencer RF; Hardy SG; Astruc J
    Neuroscience; 1981; 6(6):1023-41. PubMed ID: 6168970
    [No Abstract]   [Full Text] [Related]  

  • 19. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys.
    An X; Bandler R; Ongür D; Price JL
    J Comp Neurol; 1998 Nov; 401(4):455-79. PubMed ID: 9826273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey.
    Noda H; Sugita S; Ikeda Y
    J Comp Neurol; 1990 Dec; 302(2):330-48. PubMed ID: 1705268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.