BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6165380)

  • 21. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex.
    Schröder O; Wagner R
    J Mol Biol; 2000 May; 298(5):737-48. PubMed ID: 10801345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct detection of abortive RNA transcripts in vivo.
    Goldman SR; Ebright RH; Nickels BE
    Science; 2009 May; 324(5929):927-8. PubMed ID: 19443781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Primed abortive initiation of RNA synthesis by E. coli RNA polymerase on T7 DNA. Steady state kinetic studies.
    Smagowicz WJ; Scheit KH
    Nucleic Acids Res; 1978 Jun; 5(6):1919-32. PubMed ID: 353734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 1. RNA chain initiation, abortive initiation, and promoter escape at three bacteriophage promoters.
    Hsu LM; Vo NV; Kane CM; Chamberlin MJ
    Biochemistry; 2003 Apr; 42(13):3777-86. PubMed ID: 12667069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of an anti-alpha monoclonal antibody on interaction of Escherichia coli RNA polymerase with lac promoters.
    Riftina F; DeFalco E; Krakow JS
    Biochemistry; 1990 May; 29(18):4440-6. PubMed ID: 2190632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abortive initiation by bacteriophage T3 and T7 RNA polymerases under conditions of limiting substrate.
    Ling ML; Risman SS; Klement JF; McGraw N; McAllister WT
    Nucleic Acids Res; 1989 Feb; 17(4):1605-18. PubMed ID: 2646596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Escherichia coli mutant strain with altered expression of the tryptophan operon: ribonucleic acid synthesis in vitro.
    Pouwels PH; de Groot GP
    J Bacteriol; 1979 Aug; 139(2):398-403. PubMed ID: 378968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of an anti-beta monoclonal antibody on the interaction of the Escherichia coli RNA polymerase with the lac and TAC promoters.
    Rockwell P; Krakow JS
    Biochemistry; 1988 May; 27(9):3512-20. PubMed ID: 3291950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of a low-molecular-weight DNA binding protein, H1 factor, on the in vitro transcription of the lactose operon in Escherichia coli.
    Crepin M; Cukier-Kahn R; Gros F
    Proc Natl Acad Sci U S A; 1975 Jan; 72(1):333-7. PubMed ID: 164021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic regulation: the Lac control region.
    Dickson RC; Abelson J; Barnes WM; Reznikoff WS
    Science; 1975 Jan; 187(4171):27-35. PubMed ID: 1088926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of ribonucleic acid chain initiation. 1. A non-steady-state study of ribonucleic acid synthesis without enzyme turnover.
    Shimamoto N; Wu CW
    Biochemistry; 1980 Mar; 19(5):842-8. PubMed ID: 6153531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physicochomecial studies on interactions between DNA and RNA polymerase. Isolation and mapping of a T7 DNA fragment containing the early promoters for Escherichia coli RNA polymerase.
    Hsieh T; Wang JC
    Biochemistry; 1976 Dec; 15(26):5776-83. PubMed ID: 795461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA chain initiation by Escherichia coli RNA polymerase. Structural transitions of the enzyme in early ternary complexes.
    Krummel B; Chamberlin MJ
    Biochemistry; 1989 Sep; 28(19):7829-42. PubMed ID: 2482070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic mechanism of transcription initiation by bacteriophage T7 RNA polymerase.
    Jia Y; Patel SS
    Biochemistry; 1997 Apr; 36(14):4223-32. PubMed ID: 9100017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Step-by-Step Regulation of Productive and Abortive Transcription Initiation by Pyrophosphorolysis.
    Plaskon D; Evensen C; Henderson K; Palatnik B; Ishikuri T; Wang HC; Doughty S; Thomas Record M
    J Mol Biol; 2022 Jul; 434(13):167621. PubMed ID: 35533764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA polymerase supply and flux through the lac operon in Escherichia coli.
    Sendy B; Lee DJ; Busby SJ; Bryant JA
    Philos Trans R Soc Lond B Biol Sci; 2016 Nov; 371(1707):. PubMed ID: 27672157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification, nucleotide sequence and expression of the regulatory region of the histidine operon of Escherichia coli K-12.
    Verde P; Frunzio R; di Nocera PP; Blasi F; Bruni CB
    Nucleic Acids Res; 1981 May; 9(9):2075-86. PubMed ID: 6170941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deletion analysis of the Escherichia coli lactose promoter P2.
    Yu XM; Reznikoff WS
    Nucleic Acids Res; 1985 Apr; 13(7):2457-68. PubMed ID: 2987854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reiterative transcription initiation from galP2 promoter of Escherichia coli.
    Rostoks N; Park S; Choy HE
    Biochim Biophys Acta; 2000 Apr; 1491(1-3):185-95. PubMed ID: 10760580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional slippage during the transcription initiation process at a mutant lac promoter in vivo.
    Xiong XF; Reznikoff WS
    J Mol Biol; 1993 Jun; 231(3):569-80. PubMed ID: 7685823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.